Qian Zhong, Kun Zheng, Wanmeng Li, Kang An, Yu Liu, Xina Xiao, Shan Hai, Biao Dong, Shuangqing Li, Zhenmei An, Lunzhi Dai
{"title":"Post-translational regulation of muscle growth, muscle aging and sarcopenia","authors":"Qian Zhong, Kun Zheng, Wanmeng Li, Kang An, Yu Liu, Xina Xiao, Shan Hai, Biao Dong, Shuangqing Li, Zhenmei An, Lunzhi Dai","doi":"10.1002/jcsm.13241","DOIUrl":null,"url":null,"abstract":"<p>Skeletal muscle makes up 30–40% of the total body mass. It is of great significance in maintaining digestion, inhaling and exhaling, sustaining body posture, exercising, protecting joints and many other aspects. Moreover, muscle is also an important metabolic organ that helps to maintain the balance of sugar and fat. Defective skeletal muscle function not only limits the daily activities of the elderly but also increases the risk of disability, hospitalization and death, placing a huge burden on society and the healthcare system. Sarcopenia is a progressive decline in muscle mass, muscle strength and muscle function with age caused by environmental and genetic factors, such as the abnormal regulation of protein post-translational modifications (PTMs). To date, many studies have shown that numerous PTMs, such as phosphorylation, acetylation, ubiquitination, SUMOylation, glycosylation, glycation, methylation, S-nitrosylation, carbonylation and S-glutathionylation, are involved in the regulation of muscle health and diseases. This article systematically summarizes the post-translational regulation of muscle growth and muscle atrophy and helps to understand the pathophysiology of muscle aging and develop effective strategies for diagnosing, preventing and treating sarcopenia.</p>","PeriodicalId":186,"journal":{"name":"Journal of Cachexia, Sarcopenia and Muscle","volume":"14 3","pages":"1212-1227"},"PeriodicalIF":8.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcsm.13241","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cachexia, Sarcopenia and Muscle","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcsm.13241","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Skeletal muscle makes up 30–40% of the total body mass. It is of great significance in maintaining digestion, inhaling and exhaling, sustaining body posture, exercising, protecting joints and many other aspects. Moreover, muscle is also an important metabolic organ that helps to maintain the balance of sugar and fat. Defective skeletal muscle function not only limits the daily activities of the elderly but also increases the risk of disability, hospitalization and death, placing a huge burden on society and the healthcare system. Sarcopenia is a progressive decline in muscle mass, muscle strength and muscle function with age caused by environmental and genetic factors, such as the abnormal regulation of protein post-translational modifications (PTMs). To date, many studies have shown that numerous PTMs, such as phosphorylation, acetylation, ubiquitination, SUMOylation, glycosylation, glycation, methylation, S-nitrosylation, carbonylation and S-glutathionylation, are involved in the regulation of muscle health and diseases. This article systematically summarizes the post-translational regulation of muscle growth and muscle atrophy and helps to understand the pathophysiology of muscle aging and develop effective strategies for diagnosing, preventing and treating sarcopenia.
期刊介绍:
The Journal of Cachexia, Sarcopenia, and Muscle is a prestigious, peer-reviewed international publication committed to disseminating research and clinical insights pertaining to cachexia, sarcopenia, body composition, and the physiological and pathophysiological alterations occurring throughout the lifespan and in various illnesses across the spectrum of life sciences. This journal serves as a valuable resource for physicians, biochemists, biologists, dieticians, pharmacologists, and students alike.