In Situ Catalytic Polymerization of a Highly Homogeneous PDOL Composite Electrolyte for Long-Cycle High-Voltage Solid-State Lithium Batteries

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2022-08-25 DOI:10.1002/aenm.202201762
Hua Yang, Bo Zhang, Maoxiang Jing, Xiangqian Shen, Li Wang, Hong Xu, Xiaohong Yan, Xiangming He
{"title":"In Situ Catalytic Polymerization of a Highly Homogeneous PDOL Composite Electrolyte for Long-Cycle High-Voltage Solid-State Lithium Batteries","authors":"Hua Yang,&nbsp;Bo Zhang,&nbsp;Maoxiang Jing,&nbsp;Xiangqian Shen,&nbsp;Li Wang,&nbsp;Hong Xu,&nbsp;Xiaohong Yan,&nbsp;Xiangming He","doi":"10.1002/aenm.202201762","DOIUrl":null,"url":null,"abstract":"<p>High energy density solid-state lithium batteries require good ionic conductive solid electrolytes (SE) and stable matching with high-voltage electrode materials. Here, a highly homogeneous poly(1,3-dioxolane) composite solid electrolyte (CSE) membrane that can satisfy the above-mentioned requirements by in situ catalytic polymerization effect of yttria stabilized zirconia (YSZ) nanoparticles on the polymerization of 1,3-dioxolane (DOL), is reported. The well-dispersed YSZ nanoparticle catalyst leads to the polymerization conversion of DOL monomers up to 98.5%, which enlarges its electrochemical window exceeding 4.9 V. YSZ also significantly improves the room temperature ionic conductivity (2.75 × 10<sup>−4</sup> S cm<sup>−1</sup>) and enhances the cycle life of lithium metal anode. Based on this CSE, the Li(Ni<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>)O<sub>2</sub> (NCM622)-based solid-state lithium battery shows a long cycle life over 800 cycles. This investigation encourages polymer SE toward practical high energy solid-state batteries.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"12 39","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202201762","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 50

Abstract

High energy density solid-state lithium batteries require good ionic conductive solid electrolytes (SE) and stable matching with high-voltage electrode materials. Here, a highly homogeneous poly(1,3-dioxolane) composite solid electrolyte (CSE) membrane that can satisfy the above-mentioned requirements by in situ catalytic polymerization effect of yttria stabilized zirconia (YSZ) nanoparticles on the polymerization of 1,3-dioxolane (DOL), is reported. The well-dispersed YSZ nanoparticle catalyst leads to the polymerization conversion of DOL monomers up to 98.5%, which enlarges its electrochemical window exceeding 4.9 V. YSZ also significantly improves the room temperature ionic conductivity (2.75 × 10−4 S cm−1) and enhances the cycle life of lithium metal anode. Based on this CSE, the Li(Ni0.6Co0.2Mn0.2)O2 (NCM622)-based solid-state lithium battery shows a long cycle life over 800 cycles. This investigation encourages polymer SE toward practical high energy solid-state batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长循环高压固态锂电池用高均相PDOL复合电解质的原位催化聚合研究
高能量密度固态锂电池需要良好的离子导电固体电解质(SE)和与高压电极材料的稳定匹配。本文报道了一种高度均匀的聚(1,3-二恶氧烷)复合固体电解质(CSE)膜,该膜通过氧化钇稳定氧化锆(YSZ)纳米粒子对1,3-二恶氧烷(DOL)聚合的原位催化聚合作用而满足上述要求。分散良好的YSZ纳米颗粒催化剂使DOL单体的聚合转化率高达98.5%,电化学窗口扩大到4.9 V以上。YSZ还显著提高了锂金属阳极的室温离子电导率(2.75 × 10−4 S cm−1),提高了锂金属阳极的循环寿命。基于该CSE, Li(Ni0.6Co0.2Mn0.2)O2 (NCM622)固态锂电池的循环寿命超过800次。这项研究鼓励聚合物SE向实用的高能固态电池发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Dual-Pillar Effect in P2-Type Na0.67Ni0.33Mn0.67O2 Through Na Site Substitution Achieve Superior Electrochemical and Air/Water Dual-Stability as Cathode for Sodium-Ion Batteries Phenanthrene Treatment for O‐xylene‐Processed PM6:Y6‐Based Organic Solar Cells Enables Over 19% Efficiency Natural Dextran as an Efficient Interfacial Passivator for ZnO-Based Electron-Transport Layers in Inverted Organic Solar Cells Sub-Nano Confinement Engineering Toward Anion-Reinforced Solvation Structure to Achieve Highly Reversible Anode-Free Lithium Metal Batteries A High Throughput Platform to Minimize Voltage and Fill Factor Losses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1