Cross-Linkable Cathode Interlayer for Inverted Organic Solar Cells with Enhanced Efficiency and Stability

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2023-06-25 DOI:10.1002/aenm.202301098
Yi Yang, Yang Xiao, Bowei Xu, Jianhui Hou
{"title":"Cross-Linkable Cathode Interlayer for Inverted Organic Solar Cells with Enhanced Efficiency and Stability","authors":"Yi Yang,&nbsp;Yang Xiao,&nbsp;Bowei Xu,&nbsp;Jianhui Hou","doi":"10.1002/aenm.202301098","DOIUrl":null,"url":null,"abstract":"<p>Interlayer materials play a critical role in fabricating high-performance organic solar cells (OSCs). Herein, a cross-linked and <i>n</i>-doped cathode interlayer (CIL), namely, <i>c</i>-NDI:N, for highly efficient and stable organic solar cells is developed. This study demonstrates that the combination of high-temperature cross-linking along with <i>n</i>-doping endows the <i>c</i>-NDI:N@200 °C film with excellent robustness, high conductivity, and good film morphology. The inverted OSC using <i>c</i>-NDI:N@200 °C as CIL exhibits the highest power conversion efficiency of 17.5%, and most notably, appears in a negligible decline in device performance as the film thickness of CIL increases to ≈100 nm. Furthermore, <i>c</i>-NDI:N can serve as a protecting layer to shield the device against water ingress. Interestingly, <i>c</i>-NDI:N device can be used under water for photoelectrochemical water-splitting, highlighting the great application of <i>c</i>-NDI:N CIL in inverted OSCs.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202301098","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Interlayer materials play a critical role in fabricating high-performance organic solar cells (OSCs). Herein, a cross-linked and n-doped cathode interlayer (CIL), namely, c-NDI:N, for highly efficient and stable organic solar cells is developed. This study demonstrates that the combination of high-temperature cross-linking along with n-doping endows the c-NDI:N@200 °C film with excellent robustness, high conductivity, and good film morphology. The inverted OSC using c-NDI:N@200 °C as CIL exhibits the highest power conversion efficiency of 17.5%, and most notably, appears in a negligible decline in device performance as the film thickness of CIL increases to ≈100 nm. Furthermore, c-NDI:N can serve as a protecting layer to shield the device against water ingress. Interestingly, c-NDI:N device can be used under water for photoelectrochemical water-splitting, highlighting the great application of c-NDI:N CIL in inverted OSCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高效率和稳定性的可交联阴极间层倒置有机太阳能电池
层间材料在高性能有机太阳能电池的制造中起着至关重要的作用。本文开发了一种用于高效稳定有机太阳能电池的交联N掺杂阴极中间层(CIL),即c-NDI:N。本研究表明,高温交联与n掺杂相结合,使C - ndi:N@200°C薄膜具有优异的鲁棒性、高导电性和良好的膜形态。使用C - ndi:N@200°C作为CIL的倒转OSC的功率转换效率最高,为17.5%,最值得注意的是,当CIL的膜厚度增加到≈100 nm时,器件性能的下降可以忽略不计。此外,c-NDI:N可以作为保护层,防止设备进水。有趣的是,c-NDI:N器件可以在水下进行光电化学水分解,突出了c-NDI:N CIL在倒立OSCs中的巨大应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Recent Advances in the Large-Scale Production of Photo/Electrocatalysts for Energy Conversion and beyond Toward Practical Li–S Batteries: On the Road to a New Electrolyte High-Capacity, Long-Life All-Solid-State Lithium–Selenium Batteries Enabled by Lithium Iodide Active Additive A Fluorinated Lewis Acidic Organoboron Tunes Polysulfide Complex Structure for High‐Performance Lithium–Sulfur Batteries Rational Construction of Heterostructures with n‐Type Anti‐Barrier Layer for Enhanced Electrochemical Energy Storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1