Fluorine Functionalized MXene QDs for Near-Record-Efficiency CsPbI3 Solar Cell with High Open-Circuit Voltage

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2022-06-02 DOI:10.1002/adfm.202203704
Dongfang Xu, Tong Li, Yu Han, Xuexia He, Shaomin Yang, Yuhang Che, Jie Xu, Hong Zou, Xi Guo, Jungang Wang, Xuruo Lei, Zhike Liu
{"title":"Fluorine Functionalized MXene QDs for Near-Record-Efficiency CsPbI3 Solar Cell with High Open-Circuit Voltage","authors":"Dongfang Xu,&nbsp;Tong Li,&nbsp;Yu Han,&nbsp;Xuexia He,&nbsp;Shaomin Yang,&nbsp;Yuhang Che,&nbsp;Jie Xu,&nbsp;Hong Zou,&nbsp;Xi Guo,&nbsp;Jungang Wang,&nbsp;Xuruo Lei,&nbsp;Zhike Liu","doi":"10.1002/adfm.202203704","DOIUrl":null,"url":null,"abstract":"<p>CsPbI<sub>3</sub> inorganic perovskites have attracted significant attention due to their desirable bandgap for tandem solar cells and excellent thermal stability. However, CsPbI<sub>3</sub> perovskite solar cells (PSCs) still exhibit low efficiency and high energy loss due to nonradiative recombination. Herein, functionalized Ti<sub>3</sub>C<sub>2</sub>F<sub>x</sub> quantum dots (QDs) are prepared and selected as interface passivators to enhance the performance of CsPbI<sub>3</sub> PSCs. The systematic experimental results reveal that Ti<sub>3</sub>C<sub>2</sub>F<sub>x</sub> QDs serve as effective passivators mainly in three aspects: 1) <i>p</i>-type Ti<sub>3</sub>C<sub>2</sub>F<sub>x</sub> QDs can tune the energy level of perovskite films and provide an efficient pathway for hole transfer; 2) Ti<sub>3</sub>C<sub>2</sub>F<sub>x</sub> QDs can effectively passivate defects and reduce interfacial nonradiative recombination, and 3) Ti<sub>3</sub>C<sub>2</sub>F<sub>x</sub> QDs form a barrier layer to prevent water invasion and improve the stability of CsPbI<sub>3</sub> PSCs. Consequently, the champion CsPbI<sub>3</sub> PSC with Ti<sub>3</sub>C<sub>2</sub>F<sub>x</sub> QDs treatment exhibits an excellent efficiency of 20.44% with a high open-circuit voltage of 1.22 V. Meanwhile, the corresponding device without encapsulation retained 93% of its initial efficiency after 600 h of storage in ambient air.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202203704","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 25

Abstract

CsPbI3 inorganic perovskites have attracted significant attention due to their desirable bandgap for tandem solar cells and excellent thermal stability. However, CsPbI3 perovskite solar cells (PSCs) still exhibit low efficiency and high energy loss due to nonradiative recombination. Herein, functionalized Ti3C2Fx quantum dots (QDs) are prepared and selected as interface passivators to enhance the performance of CsPbI3 PSCs. The systematic experimental results reveal that Ti3C2Fx QDs serve as effective passivators mainly in three aspects: 1) p-type Ti3C2Fx QDs can tune the energy level of perovskite films and provide an efficient pathway for hole transfer; 2) Ti3C2Fx QDs can effectively passivate defects and reduce interfacial nonradiative recombination, and 3) Ti3C2Fx QDs form a barrier layer to prevent water invasion and improve the stability of CsPbI3 PSCs. Consequently, the champion CsPbI3 PSC with Ti3C2Fx QDs treatment exhibits an excellent efficiency of 20.44% with a high open-circuit voltage of 1.22 V. Meanwhile, the corresponding device without encapsulation retained 93% of its initial efficiency after 600 h of storage in ambient air.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高开路电压近记录效率CsPbI3太阳能电池的氟功能化MXene量子点
CsPbI3无机钙钛矿由于其理想的带隙和优异的热稳定性而引起了人们的广泛关注。然而,CsPbI3钙钛矿太阳能电池(PSCs)由于非辐射复合,仍然存在效率低、能量损失大的问题。本文制备了功能化Ti3C2Fx量子点(QDs),并选择其作为界面钝化剂来提高CsPbI3 psc的性能。系统实验结果表明,Ti3C2Fx量子点的钝化作用主要体现在三个方面:1)p型Ti3C2Fx量子点可以调节钙钛矿薄膜的能级,为空穴转移提供了有效的途径;2) Ti3C2Fx量子点能有效钝化缺陷,减少界面非辐射复合;3)Ti3C2Fx量子点能形成阻挡层,防止水分侵入,提高CsPbI3 PSCs的稳定性。因此,采用Ti3C2Fx量子点处理的冠军CsPbI3 PSC在1.22 V的高开路电压下具有20.44%的优异效率。同时,未封装的器件在环境空气中储存600 h后,其初始效率仍保持93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Remarkable Optoelectronic Characteristics of Synthesizable Square-Octagon Haeckelite Structures: Machine Learning Materials Discovery (Adv. Funct. Mater. 27/2024) Reverse-Current Tolerance for Hydrogen Evolution Reaction Activity of Lead-Decorated Nickel Catalysts in Zero-Gap Alkaline Water Electrolysis Systems (Adv. Funct. Mater. 27/2024) Electrically/Magnetically Dual-Driven Shape Memory Composites Fabricated by Multi-Material Magnetic Field-Assisted 4D Printing (Adv. Funct. Mater. 27/2024) Remarkably Boosting Piezocatalytic Performance of Sr0.5Ba0.5Nb2O6 Piezoceramics via Size Optimization and Oxygen Vacancy Engineering Ultralow‐Temperature (≤ −80 °C) Proton Pseudocapacitor with High Power‐Energy Density Enabled by Tailored Proton‐Rich Electrolyte and Electrode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1