The Application of a Multi-Material Flexible Chain Mail for the Design of an Artificial Spinal Disc to Reproduce Natural Nonlinear and Anisotropic Rotational Behavior.

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING 3D Printing and Additive Manufacturing Pub Date : 2023-12-01 Epub Date: 2023-12-11 DOI:10.1089/3dp.2021.0299
Zhiyang Yu, Kristina Shea, Tino Stankovic
{"title":"The Application of a Multi-Material Flexible Chain Mail for the Design of an Artificial Spinal Disc to Reproduce Natural Nonlinear and Anisotropic Rotational Behavior.","authors":"Zhiyang Yu, Kristina Shea, Tino Stankovic","doi":"10.1089/3dp.2021.0299","DOIUrl":null,"url":null,"abstract":"<p><p>Inspired by the potential of architected materials for achieving biomimicking functionalities and the advancement of multi-material additive manufacturing to fabricate parts with complex structures and heterogeneous material distributions, this study investigates the feasibility of using a multi-material, flexible chain mail sheet for the design of an additively manufactured artificial spinal disc for reproducing patient-specific anisotropic and nonlinear rotational behaviors. The application of a chain mail-based structure is motivated by its similarities in behaviors compared with a natural disc's fiber network that likewise has negligible bending stiffness and shape-changing ability. The proposed approach for the chain mail sheet design includes an initial characterization of the uniaxial tensile responses of the chain mail unit cell defined as the basic building block of the chain mail sheet, modeling and response calculation, and material optimization. Results show that the additively manufactured chain mail sheet is not only able to exhibit a natural strain-stiffening rotational response but also is able to reproduce natural anisotropy of three natural disc specimens in the six most common rotational scenarios in daily life. This study shows the potential of additively manufactured mechanical-metamaterials-inspired structures for implant design to restore natural mechanics.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"1 1","pages":"1238-1250"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10734901/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2021.0299","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by the potential of architected materials for achieving biomimicking functionalities and the advancement of multi-material additive manufacturing to fabricate parts with complex structures and heterogeneous material distributions, this study investigates the feasibility of using a multi-material, flexible chain mail sheet for the design of an additively manufactured artificial spinal disc for reproducing patient-specific anisotropic and nonlinear rotational behaviors. The application of a chain mail-based structure is motivated by its similarities in behaviors compared with a natural disc's fiber network that likewise has negligible bending stiffness and shape-changing ability. The proposed approach for the chain mail sheet design includes an initial characterization of the uniaxial tensile responses of the chain mail unit cell defined as the basic building block of the chain mail sheet, modeling and response calculation, and material optimization. Results show that the additively manufactured chain mail sheet is not only able to exhibit a natural strain-stiffening rotational response but also is able to reproduce natural anisotropy of three natural disc specimens in the six most common rotational scenarios in daily life. This study shows the potential of additively manufactured mechanical-metamaterials-inspired structures for implant design to restore natural mechanics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用多材料柔性链网设计人工脊柱椎间盘,再现自然非线性和各向异性旋转行为。
受建筑材料在实现仿生物功能方面的潜力以及多材料增材制造技术在制造具有复杂结构和异质材料分布的部件方面的进步的启发,本研究探讨了使用多材料柔性链片设计增材制造人工椎间盘的可行性,以再现患者特定的各向异性和非线性旋转行为。与自然椎间盘的纤维网络相比,链条邮件结构的行为具有相似性,而自然椎间盘的弯曲刚度和形状变化能力几乎可以忽略不计。所提出的链状邮件片材设计方法包括对作为链状邮件片材基本构件的链状邮件单元单元的单轴拉伸响应进行初步表征、建模和响应计算以及材料优化。结果表明,快速成型的链条邮件片材不仅能表现出自然的应变刚度旋转响应,还能在日常生活中最常见的六种旋转情况下再现三个自然圆盘试样的自然各向异性。这项研究表明,受添加制造机械超材料启发的植入物设计结构具有恢复自然力学的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
期刊最新文献
Experimental Study on Interfacial Shear Behavior of 3D Printed Recycled Mortar. Characterizing the Effect of Filament Moisture on Tensile Properties and Morphology of Fused Deposition Modeled Polylactic Acid/Polybutylene Succinate Parts. On the Development of Smart Framework for Printability Maps in Additive Manufacturing of AISI 316L Stainless Steel. Rapid Fabrication of Silica Microlens Arrays via Glass 3D Printing. Simulation of Binder Jetting and Analysis of Magnesium Alloy Bonding Mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1