Engineering Catalytic CoSe–ZnSe Heterojunctions Anchored on Graphene Aerogels for Bidirectional Sulfur Conversion Reactions

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2021-10-27 DOI:10.1002/advs.202103456
Zhengqing Ye, Ying Jiang, Tianyu Yang, Li Li, Feng Wu, Renjie Chen
{"title":"Engineering Catalytic CoSe–ZnSe Heterojunctions Anchored on Graphene Aerogels for Bidirectional Sulfur Conversion Reactions","authors":"Zhengqing Ye,&nbsp;Ying Jiang,&nbsp;Tianyu Yang,&nbsp;Li Li,&nbsp;Feng Wu,&nbsp;Renjie Chen","doi":"10.1002/advs.202103456","DOIUrl":null,"url":null,"abstract":"<p>Sluggish sulfur reduction and lithium sulfide (Li<sub>2</sub>S) oxidation prevent the widespread use of lithium–sulfur (Li–S) batteries, which are attractive alternatives to Li−ion batteries. The authors propose that a transition metal selenide heterojunction (CoSe–ZnSe) catalytically accelerates bidirectional sulfur conversion reactions. A combination of synchrotron X-ray absorption spectroscopy and density functional theory calculations show that a highly active heterointerface with charge redistribution and structure distortion effectively immobilizes sulfur species, facilitates Li ion diffusion, and decreases the sulfur reduction and Li<sub>2</sub>S oxidation energy barriers. The CoSe–ZnSe catalytic cathode exhibits high areal capacities, good rate capability, and superior cycling stability with capacity fading rate of 0.027% per cycle over 1700 cycles. Furthermore, CoSe–ZnSe heterojunctions anchored on graphene aerogels (CoSe–ZnSe@G) enhance ionic transport and catalytic activity under high sulfur loading and lean electrolyte conditions. A high areal capacity of 8.0 mAh cm<sup>−2</sup> is achieved at an electrolyte/sulfur ratio of 3 µL mg<sup>−1</sup>. This study demonstrates the importance of bidirectional catalytic heterojunctions and structure engineering in boosting Li–S battery performances.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"9 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202103456","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202103456","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 55

Abstract

Sluggish sulfur reduction and lithium sulfide (Li2S) oxidation prevent the widespread use of lithium–sulfur (Li–S) batteries, which are attractive alternatives to Li−ion batteries. The authors propose that a transition metal selenide heterojunction (CoSe–ZnSe) catalytically accelerates bidirectional sulfur conversion reactions. A combination of synchrotron X-ray absorption spectroscopy and density functional theory calculations show that a highly active heterointerface with charge redistribution and structure distortion effectively immobilizes sulfur species, facilitates Li ion diffusion, and decreases the sulfur reduction and Li2S oxidation energy barriers. The CoSe–ZnSe catalytic cathode exhibits high areal capacities, good rate capability, and superior cycling stability with capacity fading rate of 0.027% per cycle over 1700 cycles. Furthermore, CoSe–ZnSe heterojunctions anchored on graphene aerogels (CoSe–ZnSe@G) enhance ionic transport and catalytic activity under high sulfur loading and lean electrolyte conditions. A high areal capacity of 8.0 mAh cm−2 is achieved at an electrolyte/sulfur ratio of 3 µL mg−1. This study demonstrates the importance of bidirectional catalytic heterojunctions and structure engineering in boosting Li–S battery performances.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锚定在石墨烯气凝胶上的工程催化CoSe-ZnSe异质结用于双向硫转化反应
硫还原缓慢和硫化锂(Li2S)氧化阻碍了锂硫电池的广泛使用,锂硫电池是锂离子电池的有吸引力的替代品。作者提出过渡金属硒化物异质结(se - znse)催化加速了双向硫转化反应。结合同步加速器x射线吸收光谱和密度泛函数理论计算表明,具有电荷重分布和结构畸变的高活性异质界面有效地固定了硫种,促进了Li离子的扩散,降低了硫还原和Li2S氧化能垒。该催化剂具有面积容量大、倍率性能好、循环稳定性好等特点,在1700次循环中,每循环容量衰减率为0.027%。此外,锚定在石墨烯气凝胶(CoSe - ZnSe@G)上的se - znse异质结增强了高硫负载和贫电解质条件下的离子传输和催化活性。在电解质/硫比为3 μ L mg - 1时,实现了8.0 mAh cm - 2的高面容量。这项研究证明了双向催化异质结和结构工程对提高锂硫电池性能的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Efficient Photolysis of Multidrug-Resistant Polymicrobial Biofilms. Combined Exsolution and Electrodeposition Strategy for Enhancing Electrocatalytic Activity of Ti-Based Perovskite Oxides in Oxygen and Hydrogen Evolution Reactions. Deep Learning-Enabled STEM Imaging for Precise Single-Molecule Identification in Zeolite Structures. Hierarchical Targeting Nanodrug with Holistic DNA Protection for Effective Treatment of Acute Kidney Injury. RUNX2 Phase Separation Mediates Long-Range Regulation Between Osteoporosis-Susceptibility Variant and XCR1 to Promote Osteoblast Differentiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1