W. Liu 刘, L. Zhang 张, X. Dong 董, W. Ji 纪, P. Wang 王, C. Zhang 张
{"title":"Spin–orbit stable dirac nodal line in monolayer B6O","authors":"W. Liu 刘, L. Zhang 张, X. Dong 董, W. Ji 纪, P. Wang 王, C. Zhang 张","doi":"10.1088/1674-1056/ac4cba","DOIUrl":null,"url":null,"abstract":"The two-dimensional (2D) materials with nodal line band crossing have been attracting great research interest. However, it remains a challenge to find high-stable nodal line structure in 2D systems. Herein, based on the first-principles calculations and theoretical analysis, we propose that monolayer B6O possesses symmetry protected Dirac nodal line (DNL) state, with its Fermi velocity of 106 m/s in the same order of magnitude as that of graphene. The origin of DNL fermions is induced by coexistence of time-reversal symmetry and inversion symmetry. A two-band tight-binding model is further given to understand the mechanism of DNL. Considering its robustness against spin–orbit coupling (SOC) and high structural stability, these results suggest monolayer B6O as a new platform for realizing future high-speed low-dissipation devices.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ac4cba","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The two-dimensional (2D) materials with nodal line band crossing have been attracting great research interest. However, it remains a challenge to find high-stable nodal line structure in 2D systems. Herein, based on the first-principles calculations and theoretical analysis, we propose that monolayer B6O possesses symmetry protected Dirac nodal line (DNL) state, with its Fermi velocity of 106 m/s in the same order of magnitude as that of graphene. The origin of DNL fermions is induced by coexistence of time-reversal symmetry and inversion symmetry. A two-band tight-binding model is further given to understand the mechanism of DNL. Considering its robustness against spin–orbit coupling (SOC) and high structural stability, these results suggest monolayer B6O as a new platform for realizing future high-speed low-dissipation devices.
期刊介绍:
Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics.
Subject coverage includes:
Condensed matter physics and the physics of materials
Atomic, molecular and optical physics
Statistical, nonlinear and soft matter physics
Plasma physics
Interdisciplinary physics.