{"title":"Antimicrobial resistance: progress and challenges in antibiotic discovery and anti-infective therapy","authors":"Tino Krell, Miguel A. Matilla","doi":"10.1111/1751-7915.13945","DOIUrl":null,"url":null,"abstract":"<p>The alarming rise in the emergence of antimicrobial resistance in human, animal and plant pathogens is challenging global health and food production. Traditional strategies used for antibiotic discovery persistently result in the re-isolation of known compounds, calling for the need to develop more rational strategies to identify new antibiotics. Additionally, anti-infective therapy approaches targeting bacterial signalling pathways related to virulence is emerging as an alternative to the use of antibiotics. In this perspective article, we critically analyse approaches aimed at revitalizing the identification of new antibiotics and to advance antivirulence therapies. The development of high-throughput <i>in vivo</i>, <i>in vitro</i> and <i>in silico</i> platforms, together with the progress in chemical synthesis, analytical chemistry and structural biology, are reviving a research area that is of tremendous relevance for global health.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"15 1","pages":"70-78"},"PeriodicalIF":4.8000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sfamjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.13945","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.13945","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 15
Abstract
The alarming rise in the emergence of antimicrobial resistance in human, animal and plant pathogens is challenging global health and food production. Traditional strategies used for antibiotic discovery persistently result in the re-isolation of known compounds, calling for the need to develop more rational strategies to identify new antibiotics. Additionally, anti-infective therapy approaches targeting bacterial signalling pathways related to virulence is emerging as an alternative to the use of antibiotics. In this perspective article, we critically analyse approaches aimed at revitalizing the identification of new antibiotics and to advance antivirulence therapies. The development of high-throughput in vivo, in vitro and in silico platforms, together with the progress in chemical synthesis, analytical chemistry and structural biology, are reviving a research area that is of tremendous relevance for global health.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes