Zheng Gong, Guang-Yi Wei, Mojtaba Fakhraee, Lewis J. Alcott, Lei Jiang, Mingyu Zhao, Noah J. Planavsky
{"title":"Revisiting marine redox conditions during the Ediacaran Shuram carbon isotope excursion","authors":"Zheng Gong, Guang-Yi Wei, Mojtaba Fakhraee, Lewis J. Alcott, Lei Jiang, Mingyu Zhao, Noah J. Planavsky","doi":"10.1111/gbi.12547","DOIUrl":null,"url":null,"abstract":"<p>The Neoproterozoic carbonate record contains multiple carbon isotope anomalies, which are the subject of intense debate. The largest of these anomalies, the Shuram excursion (SE), occurred in the mid-Ediacaran (~574–567 Ma). Accurately reconstructing marine redox landscape is a clear path toward making sense of the mechanism that drives this δ<sup>13</sup>C anomaly. Here, we report new uranium isotopic data from the shallow-marine carbonates of the Wonoka Formation, Flinders Ranges, South Australia, where the SE is well preserved. Our data indicate that the δ<sup>238</sup>U trend during the SE is highly reproducible across globally disparate sections from different depositional settings. Previously, it was proposed that the positive shift of δ<sup>238</sup>U values during the SE suggests an extensive, near-modern level of marine oxygenation. However, recent publications suggest that the fractionation of uranium isotopes in ferruginous and anoxic conditions is comparable, opening up the possibility of non-unique interpretations of the carbonate uranium isotopic record. Here, we build on this idea by investigating the SE in conjunction with additional geochemical proxies. Using a revised uranium isotope mass balance model and an inverse stochastic carbon cycle model, we reevaluate models for δ<sup>13</sup>C and δ<sup>238</sup>U trends during the SE. We suggest that global seawater δ<sup>238</sup>U values during the SE could be explained by an expansion of ferruginous conditions and do not require a near-modern level of oxygenation during the mid-Ediacaran.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 4","pages":"407-420"},"PeriodicalIF":2.7000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12547","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
The Neoproterozoic carbonate record contains multiple carbon isotope anomalies, which are the subject of intense debate. The largest of these anomalies, the Shuram excursion (SE), occurred in the mid-Ediacaran (~574–567 Ma). Accurately reconstructing marine redox landscape is a clear path toward making sense of the mechanism that drives this δ13C anomaly. Here, we report new uranium isotopic data from the shallow-marine carbonates of the Wonoka Formation, Flinders Ranges, South Australia, where the SE is well preserved. Our data indicate that the δ238U trend during the SE is highly reproducible across globally disparate sections from different depositional settings. Previously, it was proposed that the positive shift of δ238U values during the SE suggests an extensive, near-modern level of marine oxygenation. However, recent publications suggest that the fractionation of uranium isotopes in ferruginous and anoxic conditions is comparable, opening up the possibility of non-unique interpretations of the carbonate uranium isotopic record. Here, we build on this idea by investigating the SE in conjunction with additional geochemical proxies. Using a revised uranium isotope mass balance model and an inverse stochastic carbon cycle model, we reevaluate models for δ13C and δ238U trends during the SE. We suggest that global seawater δ238U values during the SE could be explained by an expansion of ferruginous conditions and do not require a near-modern level of oxygenation during the mid-Ediacaran.
期刊介绍:
The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time.
Geobiology invites submission of high-quality articles in the following areas:
Origins and evolution of life
Co-evolution of the atmosphere, hydrosphere and biosphere
The sedimentary rock record and geobiology of critical intervals
Paleobiology and evolutionary ecology
Biogeochemistry and global elemental cycles
Microbe-mineral interactions
Biomarkers
Molecular ecology and phylogenetics.