{"title":"Characterizing the interfacial fracture energy of stiff islands on stretchable films","authors":"J. Lin, J. Tsai","doi":"10.1093/jom/ufac023","DOIUrl":null,"url":null,"abstract":"This study characterized the interfacial fracture energy of stiff islands deposited on a thermoplastic polyurethane (TPU) film. The film can deform by >200%. The film was stretched using a designed fixture, and the fracture behaviors of the islands were observed using a microscope. The island–substrate interface debonding lengths associated with different levels of substrate strain were determined in the stretching tests. Because the stretchable film was a nonlinear material, the Ogden model was employed to characterize the nonlinear constitutive relation. Through the tensile tests, the material parameters in the Ogden model were determined using the reduced-gradient optimization method. On the basis of the measured debonding lengths, a finite element model was generated for the nonlinear properties of the film, and the energy release rates at the crack tip were calculated using the J-integral method. The energy release rates, representing the interfacial fracture energy, were calculated on the basis of the arrested crack associated with different crack lengths. Results reveal that the interfacial fracture energy increased from 0.14 to 0.91 kJ/m2 as the debonding length increased. The behavior is related to the rising resistance curve in TPU materials. In addition, the shearing-dominated mode slightly decreased as the debonded length increased in the stretching tests.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufac023","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study characterized the interfacial fracture energy of stiff islands deposited on a thermoplastic polyurethane (TPU) film. The film can deform by >200%. The film was stretched using a designed fixture, and the fracture behaviors of the islands were observed using a microscope. The island–substrate interface debonding lengths associated with different levels of substrate strain were determined in the stretching tests. Because the stretchable film was a nonlinear material, the Ogden model was employed to characterize the nonlinear constitutive relation. Through the tensile tests, the material parameters in the Ogden model were determined using the reduced-gradient optimization method. On the basis of the measured debonding lengths, a finite element model was generated for the nonlinear properties of the film, and the energy release rates at the crack tip were calculated using the J-integral method. The energy release rates, representing the interfacial fracture energy, were calculated on the basis of the arrested crack associated with different crack lengths. Results reveal that the interfacial fracture energy increased from 0.14 to 0.91 kJ/m2 as the debonding length increased. The behavior is related to the rising resistance curve in TPU materials. In addition, the shearing-dominated mode slightly decreased as the debonded length increased in the stretching tests.
期刊介绍:
The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.