Richard M Gunner, Rory P Wilson, Mark D Holton, Nigel C Bennett, Abdulaziz N Alagaili, Mads F Bertelsen, Osama B Mohammed, Tobias Wang, Paul R Manger, Khairi Ismael, D Michael Scantlebury
{"title":"Examination of head versus body heading may help clarify the extent to which animal movement pathways are structured by environmental cues?","authors":"Richard M Gunner, Rory P Wilson, Mark D Holton, Nigel C Bennett, Abdulaziz N Alagaili, Mads F Bertelsen, Osama B Mohammed, Tobias Wang, Paul R Manger, Khairi Ismael, D Michael Scantlebury","doi":"10.1186/s40462-023-00432-y","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the processes that determine how animals allocate time to space is a major challenge, although it is acknowledged that summed animal movement pathways over time must define space-time use. The critical question is then, what processes structure these pathways? Following the idea that turns within pathways might be based on environmentally determined decisions, we equipped Arabian oryx with head- and body-mounted tags to determine how they orientated their heads - which we posit is indicative of them assessing the environment - in relation to their movement paths, to investigate the role of environment scanning in path tortuosity. After simulating predators to verify that oryx look directly at objects of interest, we recorded that, during routine movement, > 60% of all turns in the animals' paths, before being executed, were preceded by a change in head heading that was not immediately mirrored by the body heading: The path turn angle (as indicated by the body heading) correlated with a prior change in head heading (with head heading being mirrored by subsequent turns in the path) twenty-one times more than when path turns occurred due to the animals adopting a body heading that went in the opposite direction to the change in head heading. Although we could not determine what the objects of interest were, and therefore the proposed reasons for turning, we suggest that this reflects the use of cephalic senses to detect advantageous environmental features (e.g. food) or to detect detrimental features (e.g. predators). The results of our pilot study suggest how turns might emerge in animal pathways and we propose that examination of points of inflection in highly resolved animal paths could represent decisions in landscapes and their examination could enhance our understanding of how animal pathways are structured.</p>","PeriodicalId":54288,"journal":{"name":"Movement Ecology","volume":"11 1","pages":"71"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10612247/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Movement Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40462-023-00432-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the processes that determine how animals allocate time to space is a major challenge, although it is acknowledged that summed animal movement pathways over time must define space-time use. The critical question is then, what processes structure these pathways? Following the idea that turns within pathways might be based on environmentally determined decisions, we equipped Arabian oryx with head- and body-mounted tags to determine how they orientated their heads - which we posit is indicative of them assessing the environment - in relation to their movement paths, to investigate the role of environment scanning in path tortuosity. After simulating predators to verify that oryx look directly at objects of interest, we recorded that, during routine movement, > 60% of all turns in the animals' paths, before being executed, were preceded by a change in head heading that was not immediately mirrored by the body heading: The path turn angle (as indicated by the body heading) correlated with a prior change in head heading (with head heading being mirrored by subsequent turns in the path) twenty-one times more than when path turns occurred due to the animals adopting a body heading that went in the opposite direction to the change in head heading. Although we could not determine what the objects of interest were, and therefore the proposed reasons for turning, we suggest that this reflects the use of cephalic senses to detect advantageous environmental features (e.g. food) or to detect detrimental features (e.g. predators). The results of our pilot study suggest how turns might emerge in animal pathways and we propose that examination of points of inflection in highly resolved animal paths could represent decisions in landscapes and their examination could enhance our understanding of how animal pathways are structured.
Movement EcologyAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.60
自引率
4.90%
发文量
47
审稿时长
23 weeks
期刊介绍:
Movement Ecology is an open-access interdisciplinary journal publishing novel insights from empirical and theoretical approaches into the ecology of movement of the whole organism - either animals, plants or microorganisms - as the central theme. We welcome manuscripts on any taxa and any movement phenomena (e.g. foraging, dispersal and seasonal migration) addressing important research questions on the patterns, mechanisms, causes and consequences of organismal movement. Manuscripts will be rigorously peer-reviewed to ensure novelty and high quality.