Charge-Enriched Strategy Based on MXene-Based Polypyrrole Layers Toward Dendrite-Free Zinc Metal Anodes

IF 26 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2022-02-09 DOI:10.1002/aenm.202103979
Yongzheng Zhang, Zhenjiang Cao, Sijin Liu, Zhiguo Du, Yanglansen Cui, Jianan Gu, Yongzheng Shi, Bin Li, Shubin Yang
{"title":"Charge-Enriched Strategy Based on MXene-Based Polypyrrole Layers Toward Dendrite-Free Zinc Metal Anodes","authors":"Yongzheng Zhang,&nbsp;Zhenjiang Cao,&nbsp;Sijin Liu,&nbsp;Zhiguo Du,&nbsp;Yanglansen Cui,&nbsp;Jianan Gu,&nbsp;Yongzheng Shi,&nbsp;Bin Li,&nbsp;Shubin Yang","doi":"10.1002/aenm.202103979","DOIUrl":null,"url":null,"abstract":"<p>Although zinc metal anodes have some intrinsic advantages for aqueous zinc ion batteries, the notorious dendrites hamper its practical applications. Herein, a charge-enriched strategy through MXene-based polypyrrole (MXene-mPPy) layers is explored toward dendrite-free Zn metal anode. The MXene-mPPy layers composed of mesoporous PPy on both sides of Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i>-MXene exhibit an exceptional charge enrichment ability (149 F g<sup>−1</sup>, 5 mV s<sup>−1</sup>), which is beneficial not onlying terms of accumulating the charge levels, but also to homogenize the dispersions of electric field and ion flux as used as an artificial interface on a Zn anode. Thus, a dendrite-free Zn anode with an ultralong cycling lifespan up to 2500 h and superior rate capability is achieved, which is further applied as an anode for aqueous zinc ion batteries with a long-term span over 3000 cycles at 10 A g<sup>−1</sup>.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"12 13","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202103979","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 86

Abstract

Although zinc metal anodes have some intrinsic advantages for aqueous zinc ion batteries, the notorious dendrites hamper its practical applications. Herein, a charge-enriched strategy through MXene-based polypyrrole (MXene-mPPy) layers is explored toward dendrite-free Zn metal anode. The MXene-mPPy layers composed of mesoporous PPy on both sides of Ti3C2Tx-MXene exhibit an exceptional charge enrichment ability (149 F g−1, 5 mV s−1), which is beneficial not onlying terms of accumulating the charge levels, but also to homogenize the dispersions of electric field and ion flux as used as an artificial interface on a Zn anode. Thus, a dendrite-free Zn anode with an ultralong cycling lifespan up to 2500 h and superior rate capability is achieved, which is further applied as an anode for aqueous zinc ion batteries with a long-term span over 3000 cycles at 10 A g−1.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于mxene基聚吡咯层制备无枝晶锌金属阳极的富电荷策略
虽然锌金属阳极在水锌离子电池中具有一些固有的优点,但其不良的枝晶结构阻碍了其实际应用。本文探索了一种通过MXene-mPPy层制备无枝晶锌金属阳极的富电荷策略。在Ti3C2Tx-MXene两侧由介孔PPy组成的mxene - mxene层表现出优异的电荷富集能力(149 F g−1,5 mV s−1),这不仅有利于电荷水平的积累,而且有利于电场和离子通量的分散均匀化,可作为Zn阳极上的人工界面。因此,无枝晶锌阳极具有长达2500小时的超长循环寿命和卓越的倍率能力,进一步应用于水锌离子电池的阳极,在10 a g−1下具有超过3000次循环的长期跨度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Accelerating the Development of Organic Solar Cells: A Standardized Protocol with Machine Learning Integration Origin of the Voltage Gap and Recombination Losses in All-Perovskite Tandem Solar Cells Stabilizing High-Capacity Layered Cathode Materials via Nanocluster Cross-Linked Polymer Self-Tandem Catalysis of Unsaturated Cu with Dual Active Sites for Efficient Ammonia Electrosynthesis Mie-Resonant Thermochromic Safe Architectures for All-Season Radiative Thermal Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1