Alexmar Cordova-Gonzalez, Daniel Birgel, Max Wisshak, Tim Urich, Florian Brinkmann, Yann Marcon, Gerhard Bohrmann, J?rn Peckmann
{"title":"A carbonate corrosion experiment at a marine methane seep: The role of aerobic methanotrophic bacteria","authors":"Alexmar Cordova-Gonzalez, Daniel Birgel, Max Wisshak, Tim Urich, Florian Brinkmann, Yann Marcon, Gerhard Bohrmann, J?rn Peckmann","doi":"10.1111/gbi.12549","DOIUrl":null,"url":null,"abstract":"Methane seeps are typified by the formation of authigenic carbonates, many of which exhibit corrosion surfaces and secondary porosity believed to be caused by microbial carbonate dissolution. Aerobic methane oxidation and sulfur oxidation are two processes capable of inducing carbonate corrosion at methane seeps. Although the potential of aerobic methanotrophy to dissolve carbonate was confirmed in laboratory experiments, this process has not been studied in the environment to date. Here, we report on a carbonate corrosion experiment carried out in the REGAB Pockmark, Gabon‐Congo‐Angola passive margin, in which marble cubes were deployed for 2.5 years at two sites (CAB‐B and CAB‐C) with apparent active methane seepage and one site (CAB‐D) without methane seepage. Marble cubes exposed to active seepage (experiment CAB‐C) were found to be affected by a new type of microbioerosion. Based on 16S rRNA gene analysis, the biofilms adhering to the bioeroded marble mostly consisted of aerobic methanotrophic bacteria, predominantly belonging to the uncultured Hyd24‐01 clade. The presence of abundant 13C‐depleted lipid biomarkers including fatty acids (n‐C16:1ω8c, n‐C18:1ω8c, n‐C16:1ω5t), various 4‐mono‐ and 4,4‐dimethyl sterols, and diplopterol agrees with the dominance of aerobic methanotrophs in the CAB‐C biofilms. Among the lipids of aerobic methanotrophs, the uncommon 4α‐methylcholest‐8(14)‐en‐3β,25‐diol is interpreted to be a specific biomarker for the Hyd24‐01 clade. The combination of textural, genetic, and organic geochemical evidence suggests that aerobic methanotrophs are the main drivers of carbonate dissolution observed in the CAB‐C experiment at the REGAB pockmark.","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 4","pages":"491-506"},"PeriodicalIF":2.7000,"publicationDate":"2023-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12549","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12549","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Methane seeps are typified by the formation of authigenic carbonates, many of which exhibit corrosion surfaces and secondary porosity believed to be caused by microbial carbonate dissolution. Aerobic methane oxidation and sulfur oxidation are two processes capable of inducing carbonate corrosion at methane seeps. Although the potential of aerobic methanotrophy to dissolve carbonate was confirmed in laboratory experiments, this process has not been studied in the environment to date. Here, we report on a carbonate corrosion experiment carried out in the REGAB Pockmark, Gabon‐Congo‐Angola passive margin, in which marble cubes were deployed for 2.5 years at two sites (CAB‐B and CAB‐C) with apparent active methane seepage and one site (CAB‐D) without methane seepage. Marble cubes exposed to active seepage (experiment CAB‐C) were found to be affected by a new type of microbioerosion. Based on 16S rRNA gene analysis, the biofilms adhering to the bioeroded marble mostly consisted of aerobic methanotrophic bacteria, predominantly belonging to the uncultured Hyd24‐01 clade. The presence of abundant 13C‐depleted lipid biomarkers including fatty acids (n‐C16:1ω8c, n‐C18:1ω8c, n‐C16:1ω5t), various 4‐mono‐ and 4,4‐dimethyl sterols, and diplopterol agrees with the dominance of aerobic methanotrophs in the CAB‐C biofilms. Among the lipids of aerobic methanotrophs, the uncommon 4α‐methylcholest‐8(14)‐en‐3β,25‐diol is interpreted to be a specific biomarker for the Hyd24‐01 clade. The combination of textural, genetic, and organic geochemical evidence suggests that aerobic methanotrophs are the main drivers of carbonate dissolution observed in the CAB‐C experiment at the REGAB pockmark.
期刊介绍:
The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time.
Geobiology invites submission of high-quality articles in the following areas:
Origins and evolution of life
Co-evolution of the atmosphere, hydrosphere and biosphere
The sedimentary rock record and geobiology of critical intervals
Paleobiology and evolutionary ecology
Biogeochemistry and global elemental cycles
Microbe-mineral interactions
Biomarkers
Molecular ecology and phylogenetics.