Carbon Dots Mediated In Situ Confined Growth of Bi Clusters on g-C3N4 Nanomeshes for Boosting Plasma-Assisted Photoreduction of CO2

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2022-10-10 DOI:10.1002/smll.202204154
Xinyang Zhao, Jun Li, Xiangguang Kong, Changchang Li, Bo Lin, Fan Dong, Guidong Yang, Guosheng Shao, Chao Xue
{"title":"Carbon Dots Mediated In Situ Confined Growth of Bi Clusters on g-C3N4 Nanomeshes for Boosting Plasma-Assisted Photoreduction of CO2","authors":"Xinyang Zhao,&nbsp;Jun Li,&nbsp;Xiangguang Kong,&nbsp;Changchang Li,&nbsp;Bo Lin,&nbsp;Fan Dong,&nbsp;Guidong Yang,&nbsp;Guosheng Shao,&nbsp;Chao Xue","doi":"10.1002/smll.202204154","DOIUrl":null,"url":null,"abstract":"<p>Synthesis of high-efficiency, cost-effective, and stable photocatalysts has long been a priority for sustainable photocatalytic CO<sub>2</sub> reduction reactions (CRR), given its importance in achieving carbon neutrality goals under the new development philosophy. Fundamentally, the sluggish interface charge transportation and poor selectivity of products remain a challenge in the CRR progress. Herein, this work unveils a synergistic effect between high-density monodispersed Bi/carbon dots (CDs) and ultrathin graphite phase carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) nanomeshes for plasma-assisted photocatalytic CRR. The optimal g-C<sub>3</sub>N<sub>4</sub>/Bi/CDs heterojunction displays a high selectivity of 98% for CO production with a yield up to 22.7 µmol g<sup>−1</sup> without any sacrificial agent. The in situ confined growth of plasmonic Bi clusters favors the production of more hot carriers and improves the conductivity of g-C<sub>3</sub>N<sub>4</sub>. Meanwhile, a built-in electric field driving force modulates the directional injection photogenerated holes from plasmonic Bi clusters and g-C<sub>3</sub>N<sub>4</sub> photosensitive units to adjacent CDs reservoirs, thus promoting the rapid separation and oriented transfer in the CRR process. This work sheds light on the mechanism of plasma-assisted photocatalytic CRR and provides a pathway for designing highly efficient plasma-involved photocatalysts.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202204154","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 14

Abstract

Synthesis of high-efficiency, cost-effective, and stable photocatalysts has long been a priority for sustainable photocatalytic CO2 reduction reactions (CRR), given its importance in achieving carbon neutrality goals under the new development philosophy. Fundamentally, the sluggish interface charge transportation and poor selectivity of products remain a challenge in the CRR progress. Herein, this work unveils a synergistic effect between high-density monodispersed Bi/carbon dots (CDs) and ultrathin graphite phase carbon nitride (g-C3N4) nanomeshes for plasma-assisted photocatalytic CRR. The optimal g-C3N4/Bi/CDs heterojunction displays a high selectivity of 98% for CO production with a yield up to 22.7 µmol g−1 without any sacrificial agent. The in situ confined growth of plasmonic Bi clusters favors the production of more hot carriers and improves the conductivity of g-C3N4. Meanwhile, a built-in electric field driving force modulates the directional injection photogenerated holes from plasmonic Bi clusters and g-C3N4 photosensitive units to adjacent CDs reservoirs, thus promoting the rapid separation and oriented transfer in the CRR process. This work sheds light on the mechanism of plasma-assisted photocatalytic CRR and provides a pathway for designing highly efficient plasma-involved photocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳点介导的g-C3N4纳米网Bi簇原位受限生长促进等离子体辅助CO2光还原
长期以来,合成高效、经济、稳定的光催化剂一直是可持续光催化CO2还原反应(CRR)的重点,因为它对实现新发展理念下的碳中和目标至关重要。从根本上说,界面电荷输运缓慢和产物选择性差仍然是CRR进展中的一个挑战。本研究揭示了高密度单分散Bi/碳点(CDs)和超薄石墨相氮化碳(g-C3N4)纳米网在等离子体辅助光催化CRR中的协同效应。最佳的g- c3n4 /Bi/CDs异质结对CO的选择性高达98%,产率高达22.7µmol g−1,无需任何牺牲剂。等离子体Bi团簇的原位受限生长有利于生成更多的热载流子,提高了g-C3N4的电导率。同时,内置电场驱动力调节等离子体Bi团簇和g-C3N4光敏单元向相邻CDs储层的定向注入光生空穴,从而促进CRR过程中的快速分离和定向转移。这项工作揭示了等离子体辅助光催化CRR的机理,为设计高效的等离子体参与光催化剂提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
The Assembly of Miniaturized Droplets toward Functional Architectures Single-Atom Electron Pumps Over Transition Metal Chalcogenides Boosting Photocatalysis Unraveling the Fundamentals of Axial Coordination FeN4+1 Sites Regulating the Peroxymonosulfate Activation for Fenton-Like Activity Deciphering the Impact of Current, Composition, and Potential on the Lithiation Behavior of Si-Rich Silicon-Graphite Anodes An Eco-Friendly Passivation Strategy of Resveratrol for Highly Efficient and Antioxidative Perovskite Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1