{"title":"Checkerboard order state in superconducting FeSe/SrTiO3(001) monolayer","authors":"Cheng-Long Xue, Qian-Qian Yuan, Yong-Jie Xu, Qiyuan Li, Li-Guo Dou, Zhen-Yu Jia, Shaomin Li","doi":"10.1103/PhysRevB.107.134516","DOIUrl":null,"url":null,"abstract":"Ordered electronic states have been extensively explored in cuprates and iron-based unconventional superconductors, but seldom observed in the epitaxial FeSe/SrTiO3(001) monolayer (FeSe/STO) with an enhanced superconducting transition temperature (Tc). Here, by using scanning tunneling microscopy/ spectroscopy (STM/STS), we reveal a checkerboard charge order in the epitaxial FeSe/STO monolayer, with a period of four times the inter-Fe-atom distance along two perpendicular directions of the Fe lattice. This ordered state is uniquely present in the superconducting FeSe/STO monolayer, even at liquid nitrogen temperature, but absent in the non-superconducting FeSe monolayer or bilayer. Quasiparticle interference (QPI) measurements further confirm it as a static order without an energy-dependent dispersion and gapped out within the superconductivity gap. The intensity of the charge order shows an enhancement near the superconducting transition temperature, thus implying a correlation with the high-Tc superconductivity in the FeSe/STO monolayer. This study provides a new basis for exploring the ordered electronic states and their interplay with high-Tc superconductivity in the FeSe monolayer.","PeriodicalId":48701,"journal":{"name":"Physical Review B","volume":"387 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevB.107.134516","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ordered electronic states have been extensively explored in cuprates and iron-based unconventional superconductors, but seldom observed in the epitaxial FeSe/SrTiO3(001) monolayer (FeSe/STO) with an enhanced superconducting transition temperature (Tc). Here, by using scanning tunneling microscopy/ spectroscopy (STM/STS), we reveal a checkerboard charge order in the epitaxial FeSe/STO monolayer, with a period of four times the inter-Fe-atom distance along two perpendicular directions of the Fe lattice. This ordered state is uniquely present in the superconducting FeSe/STO monolayer, even at liquid nitrogen temperature, but absent in the non-superconducting FeSe monolayer or bilayer. Quasiparticle interference (QPI) measurements further confirm it as a static order without an energy-dependent dispersion and gapped out within the superconductivity gap. The intensity of the charge order shows an enhancement near the superconducting transition temperature, thus implying a correlation with the high-Tc superconductivity in the FeSe/STO monolayer. This study provides a new basis for exploring the ordered electronic states and their interplay with high-Tc superconductivity in the FeSe monolayer.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter