Anatomy of Dzyaloshinskii-Moriya Interaction at Co/Pt Interfaces.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2015-01-22 DOI:10.1103/PhysRevLett.115.267210
Hongxin Yang, A. Thiaville, S. Rohart, A. Fert, M. Chshiev
{"title":"Anatomy of Dzyaloshinskii-Moriya Interaction at Co/Pt Interfaces.","authors":"Hongxin Yang, A. Thiaville, S. Rohart, A. Fert, M. Chshiev","doi":"10.1103/PhysRevLett.115.267210","DOIUrl":null,"url":null,"abstract":"The Dzyaloshinskii-Moriya interaction (DMI) has been recently recognized to play a crucial role in allowing fast domain wall dynamics driven by spin-orbit torques and the generation of magnetic Skyrmions. Here, we unveil the main features and microscopic mechanisms of DMI in Co/Pt bilayers via first principles calculations. We find that the large DMI of the bilayers has a dominant contribution from the spins of the interfacial Co layer. This DMI between the interfacical Co spins extends very weakly away from the interface and is associated with a spin-orbit coupling in the adjacent atomic layer of Pt. Furthermore, no direct correlation is found between DMI and proximity induced magnetism in Pt. These results clarify the underlying mechanisms of DMI at interfaces between ferromagnetic and heavy metals and should help optimizing material combinations for domain wall and Skyrmion-based devices.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2015-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1103/PhysRevLett.115.267210","citationCount":"418","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.115.267210","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 418

Abstract

The Dzyaloshinskii-Moriya interaction (DMI) has been recently recognized to play a crucial role in allowing fast domain wall dynamics driven by spin-orbit torques and the generation of magnetic Skyrmions. Here, we unveil the main features and microscopic mechanisms of DMI in Co/Pt bilayers via first principles calculations. We find that the large DMI of the bilayers has a dominant contribution from the spins of the interfacial Co layer. This DMI between the interfacical Co spins extends very weakly away from the interface and is associated with a spin-orbit coupling in the adjacent atomic layer of Pt. Furthermore, no direct correlation is found between DMI and proximity induced magnetism in Pt. These results clarify the underlying mechanisms of DMI at interfaces between ferromagnetic and heavy metals and should help optimizing material combinations for domain wall and Skyrmion-based devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Co/Pt界面上Dzyaloshinskii-Moriya相互作用的解剖
Dzyaloshinskii-Moriya相互作用(DMI)最近被认为在自旋轨道扭矩驱动的快速畴壁动力学和磁Skyrmions的产生中起着至关重要的作用。在这里,我们通过第一性原理计算揭示了Co/Pt双层DMI的主要特征和微观机制。我们发现双分子层的大DMI主要来自于界面Co层的自旋。界面Co自旋之间的DMI从界面向外延伸非常弱,并且与相邻Pt原子层中的自旋-轨道耦合有关。此外,DMI与Pt中的邻近感应磁性之间没有直接关联。这些结果阐明了铁磁和重金属界面上DMI的潜在机制,并有助于优化畴壁和skyrmim基器件的材料组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Corrigendum to "Janus hydrogel loaded with a CO2-generating chemical reaction system: Construction, characterization, and application in fruit and vegetable preservation" [Food Chemistry 458 (2024) 140271]. Comprehensive physicochemical indicators analysis and quality evaluation model construction for the post-harvest ripening rapeseeds. Evaluation of passive samplers as a cost-effective method to predict the impact of wildfire smoke in grapes and wines. Heat-induced interactions between microfluidized hemp protein particles and caseins or whey proteins. Natural α-glucosidase inhibitors from Aquilaria sinensis leaf-tea: Targeted bio-affinity screening, identification, and inhibition mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1