Mechanism of palmitoleic acid oxidation into volatile compounds during heating

IF 2.1 3区 农林科学 Q3 CHEMISTRY, APPLIED Flavour and Fragrance Journal Pub Date : 2023-01-10 DOI:10.1002/ffj.3728
Pengxun Gao, Yuxiang Bao, Shuo Wang, Liming Lei, Binchen Wang, Lin Xiao, Kunya Cheng, Yian Wang, Sufang Zhang, Liang Dong
{"title":"Mechanism of palmitoleic acid oxidation into volatile compounds during heating","authors":"Pengxun Gao,&nbsp;Yuxiang Bao,&nbsp;Shuo Wang,&nbsp;Liming Lei,&nbsp;Binchen Wang,&nbsp;Lin Xiao,&nbsp;Kunya Cheng,&nbsp;Yian Wang,&nbsp;Sufang Zhang,&nbsp;Liang Dong","doi":"10.1002/ffj.3728","DOIUrl":null,"url":null,"abstract":"<p>To better understand the mechanism of palmitoleic acid oxidation into volatile compounds during heating, volatile profiling was investigated by combining thermal-desorption cryo-trapping with gas chromatography–mass spectrometry. A total of 49 volatile compounds were detected and identified during this process, including aldehydes (18), ketones (14), alcohols (9), furans (3) and acids and ester (5). The forming temperature of each volatile was determined. Most of the volatiles with short carbon chains were generated at low temperatures, while those with long carbon chains were generated at high temperatures. Results of principal component analysis show that nearly all of the identified volatiles were considered as the characteristic ones of the high temperature points. Meanwhile, the oxidative products of the C7–C11 saturated and unsaturated aldehydes were also detected and identified during heating to intensively investigate the oxidative mechanism of palmitoleic acid during heating. Results demonstrated that only the C10 saturated and unsaturated aldehydes could continue to be oxidized during heating. Therefore, the oxidation reactions above the secondary level of lipids mainly occurred in the C10 saturated and unsaturated aldehydes.</p>","PeriodicalId":170,"journal":{"name":"Flavour and Fragrance Journal","volume":"38 2","pages":"95-107"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flavour and Fragrance Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ffj.3728","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

To better understand the mechanism of palmitoleic acid oxidation into volatile compounds during heating, volatile profiling was investigated by combining thermal-desorption cryo-trapping with gas chromatography–mass spectrometry. A total of 49 volatile compounds were detected and identified during this process, including aldehydes (18), ketones (14), alcohols (9), furans (3) and acids and ester (5). The forming temperature of each volatile was determined. Most of the volatiles with short carbon chains were generated at low temperatures, while those with long carbon chains were generated at high temperatures. Results of principal component analysis show that nearly all of the identified volatiles were considered as the characteristic ones of the high temperature points. Meanwhile, the oxidative products of the C7–C11 saturated and unsaturated aldehydes were also detected and identified during heating to intensively investigate the oxidative mechanism of palmitoleic acid during heating. Results demonstrated that only the C10 saturated and unsaturated aldehydes could continue to be oxidized during heating. Therefore, the oxidation reactions above the secondary level of lipids mainly occurred in the C10 saturated and unsaturated aldehydes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
棕榈油酸在加热过程中氧化成挥发性化合物的机理
为了更好地了解棕榈油酸在加热过程中氧化为挥发性化合物的机理,采用热解吸低温捕获与气相色谱-质谱联用的方法研究了棕榈油酸的挥发性分析。在此过程中,共检测鉴定了49种挥发性化合物,包括醛类(18种)、酮类(14种)、醇类(9种)、呋喃类(3种)、酸类和酯类(5种),并确定了每种挥发性物质的形成温度。大部分短碳链的挥发物在低温下生成,而长碳链的挥发物在高温下生成。主成分分析结果表明,几乎所有鉴定的挥发物都被认为是高温点的特征挥发物。同时,对C7-C11饱和醛和不饱和醛在加热过程中的氧化产物进行检测和鉴定,深入探讨棕榈油酸在加热过程中的氧化机理。结果表明,只有C10饱和醛和不饱和醛在加热过程中继续被氧化。因此,二级以上脂质的氧化反应主要发生在C10饱和醛和不饱和醛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Flavour and Fragrance Journal
Flavour and Fragrance Journal 工程技术-食品科技
CiteScore
6.00
自引率
3.80%
发文量
40
审稿时长
1 months
期刊介绍: Flavour and Fragrance Journal publishes original research articles, reviews and special reports on all aspects of flavour and fragrance. Its high scientific standards and international character is ensured by a strict refereeing system and an editorial team representing the multidisciplinary expertise of our field of research. Because analysis is the matter of many submissions and supports the data used in many other domains, a special attention is placed on the quality of analytical techniques. All natural or synthetic products eliciting or influencing a sensory stimulus related to gustation or olfaction are eligible for publication in the Journal. Eligible as well are the techniques related to their preparation, characterization and safety. This notably involves analytical and sensory analysis, physical chemistry, modeling, microbiology – antimicrobial properties, biology, chemosensory perception and legislation. The overall aim is to produce a journal of the highest quality which provides a scientific forum for academia as well as for industry on all aspects of flavors, fragrances and related materials, and which is valued by readers and contributors alike.
期刊最新文献
Issue Information The Evolution of Sensory Science: Expanding the Frontiers of the Flavour and Fragrance Journal Quality by Design Perspectives for Designing Delivery System for Flavour and Fragrance: Current State-of-the-Art and for Future Exploration Unveiling the Neurocognitive Impact of Food Aroma Molecules on Pleasantness Perception: Insights From EEG and Key Brain LFT Activation Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1