Ultrahigh Energy Storage Capacitors Based on Freestanding Single-Crystalline Antiferroelectric Membrane/PVDF Composites

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2023-05-10 DOI:10.1002/adfm.202302683
Bohan Chen, Wenxuan Zhu, Tian Wang, Bin Peng, Yiwei Xu, Guohua Dong, Yunting Guo, Haixia Liu, Houbing Huang, Ming Liu
{"title":"Ultrahigh Energy Storage Capacitors Based on Freestanding Single-Crystalline Antiferroelectric Membrane/PVDF Composites","authors":"Bohan Chen,&nbsp;Wenxuan Zhu,&nbsp;Tian Wang,&nbsp;Bin Peng,&nbsp;Yiwei Xu,&nbsp;Guohua Dong,&nbsp;Yunting Guo,&nbsp;Haixia Liu,&nbsp;Houbing Huang,&nbsp;Ming Liu","doi":"10.1002/adfm.202302683","DOIUrl":null,"url":null,"abstract":"<p>Inorganic/organic dielectric composites are very attractive for high energy density electrostatic capacitors. Usually, linear dielectric and ferroelectric materials are chosen as inorganic fillers to improve energy storage performance. Antiferroelectric (AFE) materials, especially single-crystalline AFE oxides, have relatively high efficiency and higher density than linear dielectrics or ferroelectrics. However, adding single-crystalline AFE oxides into polymers to construct composite with improved energy storage performance remains elusive. In this study, high-quality freestanding single-crystalline PbZrO<sub>3</sub> membranes are obtained by a water-soluble sacrificial layer method. They exhibit classic AFE behavior and then 2D–2D type PbZrO<sub>3</sub>/PVDF composites with the different film thicknesses of PbZrO<sub>3</sub> (0.1-0.4 µm) is constructed. Their dielectric properties and polarization response improve significantly as compared to pure PVDF and are optimized in the PbZrO<sub>3</sub>(0.3 µm)/PVDF composite. Consequently, a record-high energy density of 43.3 J cm<sup>−3</sup> is achieved at a large breakdown strength of 750 MV m<sup>−1</sup>. Phase-field simulation indicates that inserting PbZrO<sub>3</sub> membranes effectively reduces the breakdown path. Single-crystalline AFE oxide membranes will be useful fillers for composite-based high-power capacitors.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"33 36","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202302683","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Inorganic/organic dielectric composites are very attractive for high energy density electrostatic capacitors. Usually, linear dielectric and ferroelectric materials are chosen as inorganic fillers to improve energy storage performance. Antiferroelectric (AFE) materials, especially single-crystalline AFE oxides, have relatively high efficiency and higher density than linear dielectrics or ferroelectrics. However, adding single-crystalline AFE oxides into polymers to construct composite with improved energy storage performance remains elusive. In this study, high-quality freestanding single-crystalline PbZrO3 membranes are obtained by a water-soluble sacrificial layer method. They exhibit classic AFE behavior and then 2D–2D type PbZrO3/PVDF composites with the different film thicknesses of PbZrO3 (0.1-0.4 µm) is constructed. Their dielectric properties and polarization response improve significantly as compared to pure PVDF and are optimized in the PbZrO3(0.3 µm)/PVDF composite. Consequently, a record-high energy density of 43.3 J cm−3 is achieved at a large breakdown strength of 750 MV m−1. Phase-field simulation indicates that inserting PbZrO3 membranes effectively reduces the breakdown path. Single-crystalline AFE oxide membranes will be useful fillers for composite-based high-power capacitors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于独立式单晶反铁电膜/PVDF复合材料的超高储能电容器
无机/有机介电复合材料是高能量密度静电电容器的重要材料。为了提高储能性能,通常选择线性介电材料和铁电材料作为无机填料。反铁电(AFE)材料,特别是单晶AFE氧化物,比线性介质或铁电材料具有更高的效率和密度。然而,将单晶AFE氧化物添加到聚合物中以构建具有改进储能性能的复合材料仍然是难以实现的。本研究采用水溶性牺牲层法制备了高质量的独立单晶PbZrO3膜。它们表现出经典的AFE行为,然后构建具有不同PbZrO3膜厚度(0.1-0.4µm)的2D-2D型PbZrO3/PVDF复合材料。与纯PVDF相比,它们的介电性能和极化响应显著提高,并在PbZrO3(0.3µm)/PVDF复合材料中得到优化。因此,在750 MV m−1的大击穿强度下,实现了创纪录的43.3 J cm−3的高能量密度。相场模拟结果表明,插入PbZrO3膜可以有效地减少击穿路径。单晶AFE氧化物膜将成为复合材料基高功率电容器的有用填料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
A Semi-Supervised Transformer Survival Prediction Model for Lung Cancer Construction of a Fluoride-Free and High-Voltage Lithium Metal Battery with a Li3N/Li2O Heterostructure Solid Electrolyte Interface Conjugated Polymer Singlet Fission Material with High Triplet Energy and Long Multiexciton Lifetime via Donor-π-Acceptor Strategy Inner/Interface Engineered Iron/Manganese-Based Mixed Phosphate Cathode with High Energy Density and Ultra-Long Cycle Life for Sodium-Ion Batteries Improving Cyclability and Structural Stability of Co-Free Layered Cathode by Controlling Porosity and Cracks in Secondary Particles for Low-Cost and High-Energy LIBs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1