{"title":"A New System of Inductive Tuning","authors":"P. Ware","doi":"10.1109/JRPROC.1938.228126","DOIUrl":null,"url":null,"abstract":"A sliding-contact variable inductance is described wherein contact reliability over long life is secured by a unique carriage arrangement and parallel nibs at the point of contact. The coil is rotatable, the high-potential contact being taken off a ring at one end. The contactor and unused end of the coil are at ground potential. The entire variable coil is used and the high-frequency limit is determined by a separate adjustable \"end\" inductance which improves the performance throughout the high-frequency range. The high-frequency limit of a continuous operating range for a given coil is near the natural frequency of the unused part of the coil when the contact is near the high-potential end of its travel. Wide frequency tuning ratios of the order of six to eight are feasible and all-wave continuous coverage may be effected with two switch positions instead of three as required with variable-condenser tuning. Oscillator circuits are described which yield substantially uniform voltage over a ten-to-one frequency range. This widerange characteristic may be obtained even in the ultra-high-frequency region. Wider ranges necessitate improvement in the tracking of the usual superheterodyne input circuit. A method for producing a fourth tracking crossover when the inductive tuner is designed for superheterodyne circuit tuning is described.","PeriodicalId":54574,"journal":{"name":"Proceedings of the Institute of Radio Engineers","volume":"26 1","pages":"308-320"},"PeriodicalIF":0.0000,"publicationDate":"1938-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JRPROC.1938.228126","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institute of Radio Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JRPROC.1938.228126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A sliding-contact variable inductance is described wherein contact reliability over long life is secured by a unique carriage arrangement and parallel nibs at the point of contact. The coil is rotatable, the high-potential contact being taken off a ring at one end. The contactor and unused end of the coil are at ground potential. The entire variable coil is used and the high-frequency limit is determined by a separate adjustable "end" inductance which improves the performance throughout the high-frequency range. The high-frequency limit of a continuous operating range for a given coil is near the natural frequency of the unused part of the coil when the contact is near the high-potential end of its travel. Wide frequency tuning ratios of the order of six to eight are feasible and all-wave continuous coverage may be effected with two switch positions instead of three as required with variable-condenser tuning. Oscillator circuits are described which yield substantially uniform voltage over a ten-to-one frequency range. This widerange characteristic may be obtained even in the ultra-high-frequency region. Wider ranges necessitate improvement in the tracking of the usual superheterodyne input circuit. A method for producing a fourth tracking crossover when the inductive tuner is designed for superheterodyne circuit tuning is described.