{"title":"Enhanced Band-to-Band-Tunneling-Induced Hot-Electron Injection in p-Channel Flash by Band-gap Offset Modification","authors":"C.-C. Wang;K.-S. Chang-Liao;C.-Y. Lu;T.-K. Wang","doi":"10.1109/LED.2006.880642","DOIUrl":null,"url":null,"abstract":"A novel p-channel flash device with a SiGe layer is proposed, which is based on the analysis made with the simulator MEDICI, to enhance the band-to-band-tunneling current and improve the programming speed. The programming biases of the p-channel flash device can be reduced with an equal programming speed. Simulation results show that more than one hundred times enhancement in the programming speed or 35% reduction of the drain voltage can be achieved in the proposed p-channel flash device with a 40% Ge content in the surface SiGe layer. In addition, a Si-cap layer is inserted between the SiGe and the tunneling oxide to obtain a high-quality interface and to optimize the cell structure.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"27 9","pages":"749-751"},"PeriodicalIF":4.1000,"publicationDate":"2006-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LED.2006.880642","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/1683867/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 13
Abstract
A novel p-channel flash device with a SiGe layer is proposed, which is based on the analysis made with the simulator MEDICI, to enhance the band-to-band-tunneling current and improve the programming speed. The programming biases of the p-channel flash device can be reduced with an equal programming speed. Simulation results show that more than one hundred times enhancement in the programming speed or 35% reduction of the drain voltage can be achieved in the proposed p-channel flash device with a 40% Ge content in the surface SiGe layer. In addition, a Si-cap layer is inserted between the SiGe and the tunneling oxide to obtain a high-quality interface and to optimize the cell structure.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.