{"title":"Efficient Identity-Based Data Integrity Auditing with Key-Exposure Resistance for Cloud Storage","authors":"Wenting Shen, Jia Yu, Ming Yang, Jiankun Hu","doi":"10.1109/tdsc.2022.3228699","DOIUrl":null,"url":null,"abstract":"The key exposure is a serious threat for the security of data integrity auditing. Once the user's private key for auditing is exposed, most of the existing data integrity auditing schemes would inevitably become unable to work. To deal with this problem, we construct a novel and efficient identity-based data integrity auditing scheme with key-exposure resilience for cloud storage. This is achieved by designing a novel key update technique, which is fully compatible with BLS signature used in identity-based data integrity auditing. In our design, the Third Party Auditor (TPA) is responsible for generating update information. The user can update his private key based on the private key in one previous time period and the update information from the TPA. Furthermore, the proposed scheme supports real lazy update, which greatly improves the efficiency and the feasibility of key update. Meanwhile, the proposed scheme relies on identity-based cryptography, which makes certificate management easy. The security proof and the performance analysis demonstrate that the proposed scheme achieves desirable security and efficiency.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"1 1","pages":"4593-4606"},"PeriodicalIF":7.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tdsc.2022.3228699","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 5
Abstract
The key exposure is a serious threat for the security of data integrity auditing. Once the user's private key for auditing is exposed, most of the existing data integrity auditing schemes would inevitably become unable to work. To deal with this problem, we construct a novel and efficient identity-based data integrity auditing scheme with key-exposure resilience for cloud storage. This is achieved by designing a novel key update technique, which is fully compatible with BLS signature used in identity-based data integrity auditing. In our design, the Third Party Auditor (TPA) is responsible for generating update information. The user can update his private key based on the private key in one previous time period and the update information from the TPA. Furthermore, the proposed scheme supports real lazy update, which greatly improves the efficiency and the feasibility of key update. Meanwhile, the proposed scheme relies on identity-based cryptography, which makes certificate management easy. The security proof and the performance analysis demonstrate that the proposed scheme achieves desirable security and efficiency.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.