Mingze He, Hongxia Wang, Fei Zhang, S. Abdullahi, Ling Yang
{"title":"Robust Blind Video Watermarking Against Geometric Deformations and Online Video Sharing Platform Processing","authors":"Mingze He, Hongxia Wang, Fei Zhang, S. Abdullahi, Ling Yang","doi":"10.1109/tdsc.2022.3232484","DOIUrl":null,"url":null,"abstract":"In recent years, online video sharing platforms have been widely available on social networks. To protect copyright and track the origins of these shared videos, some video watermarking methods have been proposed. However, their robustness performance is significantly degraded under geometric deformations, which destroy the synchronization between the watermark embedding and extraction. To this end, we propose a novel robust blind video watermarking scheme by embedding the watermark into low-order recursive Zernike moments. To reduce the time complexity, we give an efficient computation method by exploring the characteristics of video and moments. The moment accuracy is greatly improved due to the introduction of a recursive computation method. Furthermore, we design an optimization strategy to enhance visual quality and reduce distortion drift of watermarked videos by analyzing the radial basis function. The robustness of the proposed scheme is verified by different attacks, including geometric deformations, length-width ratio changes, temporal synchronization attacks, and combined attacks. In practical applications, the proposed scheme effectively resists processing from video sharing platforms and screenshots taken with smartphones and PC monitors. The watermark is extracted without the host video. Experimental results show that our proposed scheme outperforms other state-of-the-art schemes in terms of imperceptibility and robustness.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tdsc.2022.3232484","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 2
Abstract
In recent years, online video sharing platforms have been widely available on social networks. To protect copyright and track the origins of these shared videos, some video watermarking methods have been proposed. However, their robustness performance is significantly degraded under geometric deformations, which destroy the synchronization between the watermark embedding and extraction. To this end, we propose a novel robust blind video watermarking scheme by embedding the watermark into low-order recursive Zernike moments. To reduce the time complexity, we give an efficient computation method by exploring the characteristics of video and moments. The moment accuracy is greatly improved due to the introduction of a recursive computation method. Furthermore, we design an optimization strategy to enhance visual quality and reduce distortion drift of watermarked videos by analyzing the radial basis function. The robustness of the proposed scheme is verified by different attacks, including geometric deformations, length-width ratio changes, temporal synchronization attacks, and combined attacks. In practical applications, the proposed scheme effectively resists processing from video sharing platforms and screenshots taken with smartphones and PC monitors. The watermark is extracted without the host video. Experimental results show that our proposed scheme outperforms other state-of-the-art schemes in terms of imperceptibility and robustness.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.