Wen Cheng, Dazou Sang, Lingfang Zeng, Yang Wang, A. Brinkmann
{"title":"Tianji: Securing A Practical Asynchronous Multi-User ORAM","authors":"Wen Cheng, Dazou Sang, Lingfang Zeng, Yang Wang, A. Brinkmann","doi":"10.1109/tdsc.2023.3241184","DOIUrl":null,"url":null,"abstract":"Oblivious Random Access Machines (ORAMs) allow cloud users to access remote data without leaking access patterns. Current ORAM solutions achieve this goal at expense of either increasing bandwidth consumption by a factor of <inline-formula><tex-math notation=\"LaTeX\">$O(\\log N)$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mo form=\"prefix\">log</mml:mo><mml:mi>N</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"wang-ieq1-3241184.gif\"/></alternatives></inline-formula>, where <inline-formula><tex-math notation=\"LaTeX\">$N$</tex-math><alternatives><mml:math><mml:mi>N</mml:mi></mml:math><inline-graphic xlink:href=\"wang-ieq2-3241184.gif\"/></alternatives></inline-formula> is the number of data blocks, or relying on homomorphic encryption for bandwidth amplification reduction to <inline-formula><tex-math notation=\"LaTeX\">$O(1)$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"wang-ieq3-3241184.gif\"/></alternatives></inline-formula>. Furthermore, most ORAMs are only effective for a single user, while the solutions for multi-user scenarios often induce security or performance problems. This article introduces <italic>Tianji</italic> — an asynchronous multi-user Shamir-based ORAM system — which supports asynchronous network access scenarios for multiple users with improved security and performance. <italic>Tianji</italic> is implemented on top of <italic>S<inline-formula><tex-math notation=\"LaTeX\">$^{3}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>3</mml:mn></mml:msup></mml:math><inline-graphic xlink:href=\"wang-ieq4-3241184.gif\"/></alternatives></inline-formula>ORAM<inline-formula><tex-math notation=\"LaTeX\">$^+$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mo>+</mml:mo></mml:msup></mml:math><inline-graphic xlink:href=\"wang-ieq5-3241184.gif\"/></alternatives></inline-formula></italic>—an extension of the state-of-the-art Shamir-based S<inline-formula><tex-math notation=\"LaTeX\">$^{3}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>3</mml:mn></mml:msup></mml:math><inline-graphic xlink:href=\"wang-ieq6-3241184.gif\"/></alternatives></inline-formula>ORAM with a new non-eviction data write-back scheme to achieve <inline-formula><tex-math notation=\"LaTeX\">$O(1)$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"wang-ieq7-3241184.gif\"/></alternatives></inline-formula> consumption in both bandwidth amplification and storage capacity. Our experimental results show that the proposed <italic>Tianji</italic> with <italic>S<inline-formula><tex-math notation=\"LaTeX\">$^{3}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>3</mml:mn></mml:msup></mml:math><inline-graphic xlink:href=\"wang-ieq8-3241184.gif\"/></alternatives></inline-formula>ORAM<inline-formula><tex-math notation=\"LaTeX\">$^+$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mo>+</mml:mo></mml:msup></mml:math><inline-graphic xlink:href=\"wang-ieq9-3241184.gif\"/></alternatives></inline-formula></italic> can significantly outperform the state-of-the-art multi-user <italic>TaoStore</italic> in terms of access latency and client scalability. Additionally, its average response time is relatively stable when client loads increase.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"1 1","pages":"5143-5155"},"PeriodicalIF":7.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tdsc.2023.3241184","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Oblivious Random Access Machines (ORAMs) allow cloud users to access remote data without leaking access patterns. Current ORAM solutions achieve this goal at expense of either increasing bandwidth consumption by a factor of $O(\log N)$O(logN), where $N$N is the number of data blocks, or relying on homomorphic encryption for bandwidth amplification reduction to $O(1)$O(1). Furthermore, most ORAMs are only effective for a single user, while the solutions for multi-user scenarios often induce security or performance problems. This article introduces Tianji — an asynchronous multi-user Shamir-based ORAM system — which supports asynchronous network access scenarios for multiple users with improved security and performance. Tianji is implemented on top of S$^{3}$3ORAM$^+$+—an extension of the state-of-the-art Shamir-based S$^{3}$3ORAM with a new non-eviction data write-back scheme to achieve $O(1)$O(1) consumption in both bandwidth amplification and storage capacity. Our experimental results show that the proposed Tianji with S$^{3}$3ORAM$^+$+ can significantly outperform the state-of-the-art multi-user TaoStore in terms of access latency and client scalability. Additionally, its average response time is relatively stable when client loads increase.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.