{"title":"Extraction Method of Secret Message Based on Optimal Hypothesis Test","authors":"Hansong Du, Jiu-fen Liu, X. Luo, Yi Zhang","doi":"10.1109/tdsc.2023.3243907","DOIUrl":null,"url":null,"abstract":"As the ultimate goal of steganalysis, secret message extraction plays a decisive role in obtaining secret communication evidence and cracking down on criminal activities. For STC (Syndrome-Trellis Codes)-based adaptive steganography, existing pioneering work on secret message extraction: the method based on run test under plaintext embedding may misjudge incorrect stego key as correct stego key, resulting in the failure of extraction. To avoid such a situation, this manuscript proposed a secret message extraction method based on optimal hypothesis test with 100% accuracy under plaintext embedding. First, it is proved that there is a probability distribution difference between the sub-sequence extracted by correct and incorrect stego key. Then, based on the difference, an optimal hypothesis test model is designed to recover the correct stego key. Finally, given the probability of type I and II errors, the sample size and threshold in the hypothesis test are derived. Classic adaptive steganography such as HUGO (Highly Undetectable Steganography) and J-UNIWARD (JPEG Universal Wavelet Relative Distortion) have been conducted experiment, showing that the proposed method can extract message with 100% accuracy and 44 bits sample size, which verifies the correctness of the theorem and the effectiveness of the method.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tdsc.2023.3243907","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1
Abstract
As the ultimate goal of steganalysis, secret message extraction plays a decisive role in obtaining secret communication evidence and cracking down on criminal activities. For STC (Syndrome-Trellis Codes)-based adaptive steganography, existing pioneering work on secret message extraction: the method based on run test under plaintext embedding may misjudge incorrect stego key as correct stego key, resulting in the failure of extraction. To avoid such a situation, this manuscript proposed a secret message extraction method based on optimal hypothesis test with 100% accuracy under plaintext embedding. First, it is proved that there is a probability distribution difference between the sub-sequence extracted by correct and incorrect stego key. Then, based on the difference, an optimal hypothesis test model is designed to recover the correct stego key. Finally, given the probability of type I and II errors, the sample size and threshold in the hypothesis test are derived. Classic adaptive steganography such as HUGO (Highly Undetectable Steganography) and J-UNIWARD (JPEG Universal Wavelet Relative Distortion) have been conducted experiment, showing that the proposed method can extract message with 100% accuracy and 44 bits sample size, which verifies the correctness of the theorem and the effectiveness of the method.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.