Lightweight Privacy-preserving Distributed Recommender System using Tag-based Multikey Fully Homomorphic Data Encapsulation

IF 7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Dependable and Secure Computing Pub Date : 2023-11-01 DOI:10.1109/tdsc.2023.3243598
Jun Zhou, Guobin Gao, Zhenfu Cao, K. Choo, Xiaolei Dong
{"title":"Lightweight Privacy-preserving Distributed Recommender System using Tag-based Multikey Fully Homomorphic Data Encapsulation","authors":"Jun Zhou, Guobin Gao, Zhenfu Cao, K. Choo, Xiaolei Dong","doi":"10.1109/tdsc.2023.3243598","DOIUrl":null,"url":null,"abstract":"Recommender systems facilitate personalized service provision through the statistical analysis and model training of user historical data (e.g., browsing behavior, travel history, etc). To address the underpinning privacy implications associated with such systems, a number of privacy-preserving recommendation approaches have been presented. There are, however, limitations in many of these approaches. For example, approaches that apply public key (fully) homomorphic encryption (FHE) on different users. historical ratings under a unique public key of a target recommendation user incur significant computational overheads on resource-constrained local users and may not be scalable. On the other hand, approaches without utilizing public key FHE can neither resist chosen ciphertext attack (CCA), nor be straightforwardly applied to the setting of distributed servers. In this paper, a lightweight privacy-preserving distributed recommender system is proposed. Specifically, we present a new cryptographic primitive (i.e., tag-based multikey fully homomorphic data encapsulation mechanism; TMFH-DEM) designed to achieve CCA security for both input privacy and result privacy. TMFH-DEM enables a set of distributed servers to collaboratively execute efficient privacy-preserving outsourced computation on multiple inputs encrypted under different secret keys from different data owners, without using public key FHE. Building on TMFH-DEM, we propose a lightweight privacy-preserving distributed recommender system, which flexibly returns all the recommended items with certain predicted ratings for all target users. Formal security proof shows that our proposal achieves both user historical rating data privacy and recommendation result privacy. Findings from our evaluations demonstrate its practicability in terms of scalability, recommendation accuracy, computational and communication efficiency.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"1 1","pages":"5230-5246"},"PeriodicalIF":7.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tdsc.2023.3243598","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Recommender systems facilitate personalized service provision through the statistical analysis and model training of user historical data (e.g., browsing behavior, travel history, etc). To address the underpinning privacy implications associated with such systems, a number of privacy-preserving recommendation approaches have been presented. There are, however, limitations in many of these approaches. For example, approaches that apply public key (fully) homomorphic encryption (FHE) on different users. historical ratings under a unique public key of a target recommendation user incur significant computational overheads on resource-constrained local users and may not be scalable. On the other hand, approaches without utilizing public key FHE can neither resist chosen ciphertext attack (CCA), nor be straightforwardly applied to the setting of distributed servers. In this paper, a lightweight privacy-preserving distributed recommender system is proposed. Specifically, we present a new cryptographic primitive (i.e., tag-based multikey fully homomorphic data encapsulation mechanism; TMFH-DEM) designed to achieve CCA security for both input privacy and result privacy. TMFH-DEM enables a set of distributed servers to collaboratively execute efficient privacy-preserving outsourced computation on multiple inputs encrypted under different secret keys from different data owners, without using public key FHE. Building on TMFH-DEM, we propose a lightweight privacy-preserving distributed recommender system, which flexibly returns all the recommended items with certain predicted ratings for all target users. Formal security proof shows that our proposal achieves both user historical rating data privacy and recommendation result privacy. Findings from our evaluations demonstrate its practicability in terms of scalability, recommendation accuracy, computational and communication efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于标签的多密钥全同态数据封装轻量级隐私保护分布式推荐系统
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Dependable and Secure Computing
IEEE Transactions on Dependable and Secure Computing 工程技术-计算机:软件工程
CiteScore
11.20
自引率
5.50%
发文量
354
审稿时长
9 months
期刊介绍: The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance. The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability. By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.
期刊最新文献
Blockchain Based Auditable Access Control For Business Processes With Event Driven Policies. A Comprehensive Trusted Runtime for WebAssembly with Intel SGX TAICHI: Transform Your Secret Exploits Into Mine From a Victim’s Perspective Black Swan in Blockchain: Micro Analysis of Natural Forking Spenny: Extensive ICS Protocol Reverse Analysis via Field Guided Symbolic Execution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1