A Privacy-Preserving and Reputation-Based Truth Discovery Framework in Mobile Crowdsensing

IF 7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Dependable and Secure Computing Pub Date : 2023-11-01 DOI:10.1109/tdsc.2023.3276976
Yudan Cheng, Jianfeng Ma, Zhiquan Liu, Zhetao Li, Yongdong Wu, Caiqin Dong, Runchuan Li
{"title":"A Privacy-Preserving and Reputation-Based Truth Discovery Framework in Mobile Crowdsensing","authors":"Yudan Cheng, Jianfeng Ma, Zhiquan Liu, Zhetao Li, Yongdong Wu, Caiqin Dong, Runchuan Li","doi":"10.1109/tdsc.2023.3276976","DOIUrl":null,"url":null,"abstract":"In mobile crowdsensing (MCS), truth discovery (TD) plays an important role in sensing task completion. Most of the existing studies focus on the privacy preservation of mobile users, and the reliability of mobile users is evaluated by their weights which are calculated based on the submitted sensing data. However, if mobile users are unreliable, the submitted sensing data and their weights are also unreliable, which may influence the accuracy of the ground truths of sensing tasks. Therefore, this article proposes a privacy-preserving and reputation-based truth discovery framework named PRTD which can generate the ground truths of sensing tasks with high accuracy while preserving privacy. Specifically, we first preserve sensing data privacy, weight privacy, and reputation value privacy by utilizing the Paillier algorithm and Pedersen commitment. Then, to verify whether the reputation values of mobile users are tampered with and select mobile users that satisfy the corresponding reputation requirements, we design a privacy-preserving reputation verification algorithm based on reputation commitment and zero-knowledge proof and propose a concept of reliability level to select mobile users. Finally, a general TD algorithm with reliability level is presented to improve the accuracy of the ground truths of sensing tasks. Moreover, theoretical analysis and performance evaluation are conducted, and the evaluation results demonstrate that the PRTD framework outperforms the existing TD frameworks in several evaluation metrics in the synthetic dataset and real-world dataset.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"1 1","pages":"5293-5311"},"PeriodicalIF":7.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tdsc.2023.3276976","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

Abstract

In mobile crowdsensing (MCS), truth discovery (TD) plays an important role in sensing task completion. Most of the existing studies focus on the privacy preservation of mobile users, and the reliability of mobile users is evaluated by their weights which are calculated based on the submitted sensing data. However, if mobile users are unreliable, the submitted sensing data and their weights are also unreliable, which may influence the accuracy of the ground truths of sensing tasks. Therefore, this article proposes a privacy-preserving and reputation-based truth discovery framework named PRTD which can generate the ground truths of sensing tasks with high accuracy while preserving privacy. Specifically, we first preserve sensing data privacy, weight privacy, and reputation value privacy by utilizing the Paillier algorithm and Pedersen commitment. Then, to verify whether the reputation values of mobile users are tampered with and select mobile users that satisfy the corresponding reputation requirements, we design a privacy-preserving reputation verification algorithm based on reputation commitment and zero-knowledge proof and propose a concept of reliability level to select mobile users. Finally, a general TD algorithm with reliability level is presented to improve the accuracy of the ground truths of sensing tasks. Moreover, theoretical analysis and performance evaluation are conducted, and the evaluation results demonstrate that the PRTD framework outperforms the existing TD frameworks in several evaluation metrics in the synthetic dataset and real-world dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动众测中的隐私保护和基于声誉的真相发现框架
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Dependable and Secure Computing
IEEE Transactions on Dependable and Secure Computing 工程技术-计算机:软件工程
CiteScore
11.20
自引率
5.50%
发文量
354
审稿时长
9 months
期刊介绍: The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance. The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability. By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.
期刊最新文献
Blockchain Based Auditable Access Control For Business Processes With Event Driven Policies. A Comprehensive Trusted Runtime for WebAssembly with Intel SGX TAICHI: Transform Your Secret Exploits Into Mine From a Victim’s Perspective Black Swan in Blockchain: Micro Analysis of Natural Forking Spenny: Extensive ICS Protocol Reverse Analysis via Field Guided Symbolic Execution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1