{"title":"Inside Cover","authors":"","doi":"10.1002/pol.20230513","DOIUrl":null,"url":null,"abstract":"<p>Microfluidics are key tools for designing uniform polymer microgels via emulsion templates, although usually limited to microliter quantities. 3D printing forms a promising basis to fabricate flow cells in a single process step, enabling the integration of various functional microfluidic units in one device, e.g., to address the demand for large quantities of microgels for particle-based inks in extrusion-based 3D printing or for constructing supragels. Here, parallelized droplet formation and splitting are combined in one reusable 3D-printed flow cell to form polymer microparticles at milliliter-per-hour scale. Cover art designed by Martin Schumann. (DOI: 10.1002/pol.20230213)\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":199,"journal":{"name":"Journal of Polymer Science Part A: Polymer Chemistry","volume":"61 16","pages":"ii"},"PeriodicalIF":2.7020,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pol.20230513","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science Part A: Polymer Chemistry","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20230513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Microfluidics are key tools for designing uniform polymer microgels via emulsion templates, although usually limited to microliter quantities. 3D printing forms a promising basis to fabricate flow cells in a single process step, enabling the integration of various functional microfluidic units in one device, e.g., to address the demand for large quantities of microgels for particle-based inks in extrusion-based 3D printing or for constructing supragels. Here, parallelized droplet formation and splitting are combined in one reusable 3D-printed flow cell to form polymer microparticles at milliliter-per-hour scale. Cover art designed by Martin Schumann. (DOI: 10.1002/pol.20230213)
期刊介绍:
Part A: Polymer Chemistry is devoted to studies in fundamental organic polymer chemistry and physical organic chemistry. This includes all related topics (such as organic, bioorganic, bioinorganic and biological chemistry of monomers, polymers, oligomers and model compounds, inorganic and organometallic chemistry for catalysts, mechanistic studies, supramolecular chemistry aspects relevant to polymer...