F-UNet++: Remote Sensing Image Fusion Based on Multipurpose Adaptive Shuffle Attention and Composite Multi-Input Reconstruction Network

IF 5.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Instrumentation and Measurement Pub Date : 2022-12-15 DOI:10.1109/TIM.2022.3229725
Xin Jin;Pingfan Zhang;Qian Jiang;Shengfa Miao;Shaowen Yao;Wei Zhou
{"title":"F-UNet++: Remote Sensing Image Fusion Based on Multipurpose Adaptive Shuffle Attention and Composite Multi-Input Reconstruction Network","authors":"Xin Jin;Pingfan Zhang;Qian Jiang;Shengfa Miao;Shaowen Yao;Wei Zhou","doi":"10.1109/TIM.2022.3229725","DOIUrl":null,"url":null,"abstract":"The fusion of multispectral (MS) and panchromatic (PAN) images is of great significance for the construction of high-resolution remote sensing images. Because of differences in sensors, no single MS or PAN image can express the complete information of a scene. Therefore, it is a key issue to fuse MS images containing rich spectral content and PAN images with spatial information to construct a high-resolution MS image. In this work, an adaptive shuffle attention (ASA) module and an optimized UNet++ are combined in a fusion-UNet++ (F-UNet++) framework for the problem of MS and PAN image fusion. This ASA module can focus on important information in the mixed domain and adjust the dimensions of tensors. F-UNet++ includes a multiscale feature extraction module, multiscale feature fusion module, and image reconstruction module. The multiscale feature extraction module obtains spectral and spatial information, the multiscale feature fusion module fuses spectral and spatial information, and a composite multi-input image reconstruction module (CMI-UNet++) reconstructs the final image. By combining the ASA attention module, the loss of feature information can be reduced to enhance the fidelity of the spectral and spatial information of the fused image. Experiments show that F-UNet++ is qualitatively and quantitatively superior to current image fusion methods. (The code is available at \n<uri>https://github.com/Josephing/F-UNet</uri>\n).","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"72 ","pages":"1-15"},"PeriodicalIF":5.6000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9989428/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The fusion of multispectral (MS) and panchromatic (PAN) images is of great significance for the construction of high-resolution remote sensing images. Because of differences in sensors, no single MS or PAN image can express the complete information of a scene. Therefore, it is a key issue to fuse MS images containing rich spectral content and PAN images with spatial information to construct a high-resolution MS image. In this work, an adaptive shuffle attention (ASA) module and an optimized UNet++ are combined in a fusion-UNet++ (F-UNet++) framework for the problem of MS and PAN image fusion. This ASA module can focus on important information in the mixed domain and adjust the dimensions of tensors. F-UNet++ includes a multiscale feature extraction module, multiscale feature fusion module, and image reconstruction module. The multiscale feature extraction module obtains spectral and spatial information, the multiscale feature fusion module fuses spectral and spatial information, and a composite multi-input image reconstruction module (CMI-UNet++) reconstructs the final image. By combining the ASA attention module, the loss of feature information can be reduced to enhance the fidelity of the spectral and spatial information of the fused image. Experiments show that F-UNet++ is qualitatively and quantitatively superior to current image fusion methods. (The code is available at https://github.com/Josephing/F-UNet ).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
F-UNet++:基于多用途自适应无序注意和复合多输入重建网络的遥感图像融合
多光谱(MS)和全色(PAN)图像的融合对于构建高分辨率遥感图像具有重要意义。由于传感器的差异,没有一张MS或PAN图像能够表达场景的完整信息。因此,融合包含丰富光谱内容的MS图像和具有空间信息的PAN图像来构建高分辨率MS图像是一个关键问题。在这项工作中,针对MS和PAN图像融合问题,将自适应混洗注意力(ASA)模块和优化的UNet++结合到融合UNet++(F-UNet++)框架中。该ASA模块可以关注混合域中的重要信息,并调整张量的维度。F-UNet++包括多尺度特征提取模块、多尺度特征融合模块和图像重建模块。多尺度特征提取模块获得光谱和空间信息,多尺度特征融合模块融合光谱和空间信号,复合多输入图像重建模块(CMI-UNet++)重建最终图像。通过组合ASA注意力模块,可以减少特征信息的损失,以提高融合图像的光谱和空间信息的保真度。实验表明,F-UNet++在质量和数量上都优于现有的图像融合方法。(代码可在https://github.com/Josephing/F-UNet)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
期刊最新文献
A Deep Learning Technique for Real-Time Detection of Cognitive Load Using Optimal Number of EEG Electrodes Precision Controlled and Optimized Manufacturing of Sheet Metal Process by Perception and Prediction Study on Properties of a Hybrid Photomultiplier Tube Based on a SiC Schottky Diode Combined With an MCP Instantaneous Rotational Speed-Sensing Method Using Circumferential Constant-Density-Sine Fringe Pattern Harmonics and Disturbance Rejection in Optoelectronic Tracking and Measuring Systems Using Trigger Resonant and Robust Current Controller With Cascaded Two-Degrees-of-Freedom Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1