Moving Target Refocusing Algorithm in 2-D Wavenumber Domain After BP Integral

IF 4 3区 地球科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Geoscience and Remote Sensing Letters Pub Date : 2018-01-01 DOI:10.1109/LGRS.2017.2777494
Qi Dong, M. Xing, X. Xia, Sheng Zhang, Guangcai Sun
{"title":"Moving Target Refocusing Algorithm in 2-D Wavenumber Domain After BP Integral","authors":"Qi Dong, M. Xing, X. Xia, Sheng Zhang, Guangcai Sun","doi":"10.1109/LGRS.2017.2777494","DOIUrl":null,"url":null,"abstract":"Focusing moving targets with frequency-domain algorithms may suffer from azimuth spectrum not entirely contained within a pulse-repetition frequency band, which may lead to degraded detection performance due to distributing the energy to the artifacts. In order to avoid this problem, a refocusing algorithm after back-projection integral is proposed. The main idea is first to uniformly and coarsely focus moving targets for detection, and then extract the detected targets for refocusing. By deriving the exact analytic expression of the wavenumber spectrum, motion parameter estimation and motion compensation are directly carried out on the 2-D wavenumber domain of the small-sized extracted data, which involves fast Fourier transform and Inverse Fast Fourier Transform operations only with no interpolation, thus reduces the computational complexity. Then, the final refocused image of the moving target is achieved. Refocusing results of both airborne and spaceborne synthetic aperture radar data are shown to validate the effectiveness of the proposed method.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"15 1","pages":"127-131"},"PeriodicalIF":4.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LGRS.2017.2777494","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LGRS.2017.2777494","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 12

Abstract

Focusing moving targets with frequency-domain algorithms may suffer from azimuth spectrum not entirely contained within a pulse-repetition frequency band, which may lead to degraded detection performance due to distributing the energy to the artifacts. In order to avoid this problem, a refocusing algorithm after back-projection integral is proposed. The main idea is first to uniformly and coarsely focus moving targets for detection, and then extract the detected targets for refocusing. By deriving the exact analytic expression of the wavenumber spectrum, motion parameter estimation and motion compensation are directly carried out on the 2-D wavenumber domain of the small-sized extracted data, which involves fast Fourier transform and Inverse Fast Fourier Transform operations only with no interpolation, thus reduces the computational complexity. Then, the final refocused image of the moving target is achieved. Refocusing results of both airborne and spaceborne synthetic aperture radar data are shown to validate the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BP积分后二维波数域运动目标重聚焦算法
用频域算法对运动目标进行聚焦时,方位角频谱不完全包含在脉冲重复频带内,由于将能量分散到伪影上,可能导致检测性能下降。为了避免这一问题,提出了一种反投影积分后的重聚焦算法。其主要思想是先对运动目标进行均匀粗聚焦进行检测,然后提取检测到的目标进行再聚焦。通过推导波数谱的精确解析表达式,直接在小尺寸提取数据的二维波数域上进行运动参数估计和运动补偿,只需进行快速傅立叶变换和快速傅立叶反变换,无需插值,从而降低了计算复杂度。最后得到运动目标的重聚焦图像。机载和星载合成孔径雷达数据的调焦结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters 工程技术-地球化学与地球物理
CiteScore
7.60
自引率
12.50%
发文量
1113
审稿时长
3.4 months
期刊介绍: IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.
期刊最新文献
Target-driven Real-time Geometric Processing Based on VLR Model for LuoJia3-02 Satellite A “Difference In Difference” based method for unsupervised change detection in season-varying images On the Potential of Orbital VHF Sounding Radars to Locate Shallow Aquifers in Arid Areas Using Reflectometry A two-branch neural network for gas-bearing prediction using latent space adaptation for data augmentation-An application for deep carbonate reservoirs AccuLiteFastNet: A Remote Sensing Object Detection Model Combining High Accuracy, Lightweight Design, and Fast Inference Speed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1