{"title":"GreenCrowd: Toward a Holistic Algorithmic Crowd Charging Framework","authors":"Theofanis P. Raptis, Luca Bedogni","doi":"10.1109/mprv.2023.3308014","DOIUrl":null,"url":null,"abstract":"Crowd charging represents an alternative peer-to-peer energy replenishment option for mobile users to align with the circular economy paradigm. Following this option, users bound by finite resource capacity utilize the energy from external to the crowd wireless or wired energy sources (such as shared chargers), and internal to the crowd energy sources (such as mobile devices, via wireless power transfer). If designed carefully, such utilization can boost the energy availability of users and provide energy ubiquitously to their devices for making them functional for longer. This article proposes the GreenCrowd framework, introducing a privacy-by-design in the digital domain crowd charging process, the architecture of which incorporates multiple crowd-* components, such as online social information exploitation, algorithmic battery aging mitigation, user reward mechanisms, and advanced decision making. The primary aim of article is to present the technological and applicative requirements and constraints of GreenCrowd, and provide practical evidence on its feasibility.","PeriodicalId":55021,"journal":{"name":"IEEE Pervasive Computing","volume":"1 1","pages":"58-65"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Pervasive Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/mprv.2023.3308014","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Crowd charging represents an alternative peer-to-peer energy replenishment option for mobile users to align with the circular economy paradigm. Following this option, users bound by finite resource capacity utilize the energy from external to the crowd wireless or wired energy sources (such as shared chargers), and internal to the crowd energy sources (such as mobile devices, via wireless power transfer). If designed carefully, such utilization can boost the energy availability of users and provide energy ubiquitously to their devices for making them functional for longer. This article proposes the GreenCrowd framework, introducing a privacy-by-design in the digital domain crowd charging process, the architecture of which incorporates multiple crowd-* components, such as online social information exploitation, algorithmic battery aging mitigation, user reward mechanisms, and advanced decision making. The primary aim of article is to present the technological and applicative requirements and constraints of GreenCrowd, and provide practical evidence on its feasibility.
期刊介绍:
IEEE Pervasive Computing explores the role of computing in the physical world–as characterized by visions such as the Internet of Things and Ubiquitous Computing. Designed for researchers, practitioners, and educators, this publication acts as a catalyst for realizing the ideas described by Mark Weiser in 1988. The essence of this vision is the creation of environments saturated with sensing, computing, and wireless communication that gracefully support the needs of individuals and society. Many key building blocks for this vision are now viable commercial technologies: wearable and handheld computers, wireless networking, location sensing, Internet of Things platforms, and so on. However, the vision continues to present deep challenges for experts in areas such as hardware design, sensor networks, mobile systems, human-computer interaction, industrial design, machine learning, data science, and societal issues including privacy and ethics. Through special issues, the magazine explores applications in areas such as assisted living, automotive systems, cognitive assistance, hardware innovations, ICT4D, manufacturing, retail, smart cities, and sustainability. In addition, the magazine accepts peer-reviewed papers of wide interest under a general call, and also features regular columns on hot topics and interviews with luminaries in the field.