SAR Coregistration by Robust Selection of Extended Targets and Iterative Outlier Cancellation

IF 4 3区 地球科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Geoscience and Remote Sensing Letters Pub Date : 2022-01-01 DOI:10.1109/lgrs.2021.3132661
L. Pallotta, G. Giunta, C. Clemente, J. Soraghan
{"title":"SAR Coregistration by Robust Selection of Extended Targets and Iterative Outlier Cancellation","authors":"L. Pallotta, G. Giunta, C. Clemente, J. Soraghan","doi":"10.1109/lgrs.2021.3132661","DOIUrl":null,"url":null,"abstract":"This letter extends the constrained least-squares (CLS) optimization method developed to coregister multitemporal synthetic aperture radar (SAR) images affected by a joint rotation effect and range/azimuth shifts enforcing the absence of zooming effects. To take advantage of the structural information extracted from the scene, the method starts with a detection stage that identifies extended targets/areas in the images. The selected tie-points allow the CLS problem to be reformulated to find its (initial) solution based on a robust subset of image blocks. Then, the mean square error (MSE) of each equation evaluated from the initial solution allows to implement an iterative cancellation procedure to further skim the CLS equation set. The effectiveness of the proposed procedure is validated on real SAR data in comparison with the standard CLS.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"19 1","pages":"1-5"},"PeriodicalIF":4.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/lgrs.2021.3132661","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5

Abstract

This letter extends the constrained least-squares (CLS) optimization method developed to coregister multitemporal synthetic aperture radar (SAR) images affected by a joint rotation effect and range/azimuth shifts enforcing the absence of zooming effects. To take advantage of the structural information extracted from the scene, the method starts with a detection stage that identifies extended targets/areas in the images. The selected tie-points allow the CLS problem to be reformulated to find its (initial) solution based on a robust subset of image blocks. Then, the mean square error (MSE) of each equation evaluated from the initial solution allows to implement an iterative cancellation procedure to further skim the CLS equation set. The effectiveness of the proposed procedure is validated on real SAR data in comparison with the standard CLS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扩展目标鲁棒选择和迭代离群值抵消的SAR共配准
这封信扩展了约束最小二乘(CLS)优化方法,该方法开发用于受联合旋转效应和距离/方位角位移影响的多时相合成孔径雷达(SAR)图像的共配准,从而强制缺少缩放效应。为了利用从场景中提取的结构信息,该方法从识别图像中扩展目标/区域的检测阶段开始。所选的结合点允许重新定义CLS问题,以便根据图像块的健壮子集找到其(初始)解决方案。然后,从初始解评估的每个方程的均方误差(MSE)允许实现迭代消去程序,以进一步撇去CLS方程集。通过与标准CLS的比较,在实际SAR数据上验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters 工程技术-地球化学与地球物理
CiteScore
7.60
自引率
12.50%
发文量
1113
审稿时长
3.4 months
期刊介绍: IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.
期刊最新文献
Target-driven Real-time Geometric Processing Based on VLR Model for LuoJia3-02 Satellite A “Difference In Difference” based method for unsupervised change detection in season-varying images On the Potential of Orbital VHF Sounding Radars to Locate Shallow Aquifers in Arid Areas Using Reflectometry A two-branch neural network for gas-bearing prediction using latent space adaptation for data augmentation-An application for deep carbonate reservoirs AccuLiteFastNet: A Remote Sensing Object Detection Model Combining High Accuracy, Lightweight Design, and Fast Inference Speed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1