Ship Detection Method Based on Scattering Contribution for PolSAR Image

IF 4 3区 地球科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Geoscience and Remote Sensing Letters Pub Date : 2022-01-01 DOI:10.1109/lgrs.2021.3138796
Xueli Pan, Zhenhua Wu, Lixia Yang, Zhixiang Huang
{"title":"Ship Detection Method Based on Scattering Contribution for PolSAR Image","authors":"Xueli Pan, Zhenhua Wu, Lixia Yang, Zhixiang Huang","doi":"10.1109/lgrs.2021.3138796","DOIUrl":null,"url":null,"abstract":"Due to the differentiation of polarimetric scattering mechanisms between ships and sea surface, designing the ship detection method in polarimetric synthetic aperture radar (PolSAR) is a potential promising technique and has been paid extensive attention. The complexity of sea clutter and weak scattering of small ships result in a great challenge for high-precision ship detection. In this letter, we investigate the scattering mechanisms of ships to improve the detection performance and propose a novel ship detection method based on the principal contribution of scattering mechanisms. First, the seven-component model-based decomposition (SCMD) is used to analyze the scattering mechanisms of ships. Second, the primary scattering contribution and local contrast (SCLC) mechanism are used to enhance ships, especially small ships. Finally, the threshold segmentation is used to realize the extraction of ships. Experimental results by real PolSAR data not only verify the rationality and effectiveness of the constructed detection metric but also show the clear superiority of the proposed detection method, which can encourage further application of polarimetric scattering mechanisms in ship detection.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"19 1","pages":"1-5"},"PeriodicalIF":4.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/lgrs.2021.3138796","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

Abstract

Due to the differentiation of polarimetric scattering mechanisms between ships and sea surface, designing the ship detection method in polarimetric synthetic aperture radar (PolSAR) is a potential promising technique and has been paid extensive attention. The complexity of sea clutter and weak scattering of small ships result in a great challenge for high-precision ship detection. In this letter, we investigate the scattering mechanisms of ships to improve the detection performance and propose a novel ship detection method based on the principal contribution of scattering mechanisms. First, the seven-component model-based decomposition (SCMD) is used to analyze the scattering mechanisms of ships. Second, the primary scattering contribution and local contrast (SCLC) mechanism are used to enhance ships, especially small ships. Finally, the threshold segmentation is used to realize the extraction of ships. Experimental results by real PolSAR data not only verify the rationality and effectiveness of the constructed detection metric but also show the clear superiority of the proposed detection method, which can encourage further application of polarimetric scattering mechanisms in ship detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于散射贡献的PolSAR图像舰船检测方法
由于船舶与海面之间的极化散射机制存在差异,设计极化合成孔径雷达(PolSAR)中的船舶探测方法是一项极具发展前景的技术,受到了广泛的关注。海杂波的复杂性和小型船舶的弱散射给高精度船舶探测带来了很大的挑战。本文研究了舰船的散射机制以提高探测性能,并提出了一种基于散射机制主贡献的舰船探测新方法。首先,采用基于七分量模型的分解(SCMD)方法对舰船散射机理进行分析。其次,利用初级散射贡献和局部对比度(SCLC)机制对船舶特别是小型船舶进行增强。最后,利用阈值分割实现船舶的提取。真实PolSAR数据的实验结果不仅验证了所构建的检测度量的合理性和有效性,而且表明了所提检测方法的明显优越性,为极化散射机制在舰船检测中的进一步应用提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters 工程技术-地球化学与地球物理
CiteScore
7.60
自引率
12.50%
发文量
1113
审稿时长
3.4 months
期刊介绍: IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.
期刊最新文献
A “Difference In Difference” based method for unsupervised change detection in season-varying images AccuLiteFastNet: A Remote Sensing Object Detection Model Combining High Accuracy, Lightweight Design, and Fast Inference Speed Monitoring ten insect pests in selected orchards in three Azorean Islands: The project CUARENTAGRI. Maritime Radar Target Detection in Sea Clutter Based on CNN With Dual-Perspective Attention A Semantics-Geometry Framework for Road Extraction From Remote Sensing Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1