High-Resolution Refocusing for Defocused ISAR Images by Complex-Valued Pix2pixHD Network

IF 4 3区 地球科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Geoscience and Remote Sensing Letters Pub Date : 2022-01-01 DOI:10.1109/LGRS.2022.3210036
Haoxuan Yuan, Hongbo Li, Yun Zhang, Yong Wang, Zitao Liu, Chenxi Wei, Chengxin Yao
{"title":"High-Resolution Refocusing for Defocused ISAR Images by Complex-Valued Pix2pixHD Network","authors":"Haoxuan Yuan, Hongbo Li, Yun Zhang, Yong Wang, Zitao Liu, Chenxi Wei, Chengxin Yao","doi":"10.1109/LGRS.2022.3210036","DOIUrl":null,"url":null,"abstract":"Inverse synthetic aperture radar (ISAR) is an effective detection method for targets. However, for the maneuvering targets, the Doppler frequency induced by an arbitrary scatterer on the target is time-varying, which will cause defocus on ISAR images and bring difficulties for the further recognition process. It is hard for traditional methods to well refocus all positions on the target well. In recent years, generative adversarial networks (GANs) achieve great success in image translation. However, the current refocusing models ignore the information of high-order terms containing in the relationship between real and imaginary parts of the data. To this end, an end-to-end refocusing network, named complex-valued pix2pixHD (CVPHD), is proposed to learn the mapping from defocus to focus, which utilizes complex-valued (CV) ISAR images as an input. A CV instance normalization layer is applied to mine the deep relationship between the complex parts by calculating the covariance of them and accelerate the training. Subsequently, an innovative adaptively weighted loss function is put forward to improve the overall refocusing effect. Finally, the proposed CVPHD is tested with the simulated and real dataset, and both can get well-refocused results. The results of comparative experiments show that the refocusing error can be reduced if extending the pix2pixHD network to the CV domain and the performance of CVPHD surpasses other autofocus methods in refocusing effects. The code and dataset have been available online (https://github.com/yhx-hit/CVPHD).","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"19 1","pages":"1-5"},"PeriodicalIF":4.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LGRS.2022.3210036","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

Abstract

Inverse synthetic aperture radar (ISAR) is an effective detection method for targets. However, for the maneuvering targets, the Doppler frequency induced by an arbitrary scatterer on the target is time-varying, which will cause defocus on ISAR images and bring difficulties for the further recognition process. It is hard for traditional methods to well refocus all positions on the target well. In recent years, generative adversarial networks (GANs) achieve great success in image translation. However, the current refocusing models ignore the information of high-order terms containing in the relationship between real and imaginary parts of the data. To this end, an end-to-end refocusing network, named complex-valued pix2pixHD (CVPHD), is proposed to learn the mapping from defocus to focus, which utilizes complex-valued (CV) ISAR images as an input. A CV instance normalization layer is applied to mine the deep relationship between the complex parts by calculating the covariance of them and accelerate the training. Subsequently, an innovative adaptively weighted loss function is put forward to improve the overall refocusing effect. Finally, the proposed CVPHD is tested with the simulated and real dataset, and both can get well-refocused results. The results of comparative experiments show that the refocusing error can be reduced if extending the pix2pixHD network to the CV domain and the performance of CVPHD surpasses other autofocus methods in refocusing effects. The code and dataset have been available online (https://github.com/yhx-hit/CVPHD).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于复值Pix2pixHD网络的离焦ISAR图像高分辨率重聚焦
逆合成孔径雷达(ISAR)是一种有效的目标探测方法。然而,对于机动目标,目标上任意散射体诱导的多普勒频率是时变的,会导致ISAR图像离焦,给进一步识别带来困难。传统方法很难将所有位置重新聚焦到目标井上。近年来,生成对抗网络(GANs)在图像翻译领域取得了巨大的成功。然而,目前的重聚焦模型忽略了包含在数据实部和虚部关系中的高阶项信息。为此,提出了一个端到端重聚焦网络,命名为复值pix2pixHD (CVPHD),该网络利用复值(CV) ISAR图像作为输入,学习从离焦到聚焦的映射。利用CV实例归一化层,通过计算复杂部分的协方差来挖掘复杂部分之间的深层关系,加快训练速度。随后,提出了一种创新的自适应加权损失函数,以提高整体重聚焦效果。最后,利用仿真数据集和真实数据集对所提出的CVPHD进行了测试,两者都能获得较好的再聚焦结果。对比实验结果表明,将pix2pixHD网络扩展到CV域可以减小自动调焦误差,并且CVPHD的调焦效果优于其他自动调焦方法。代码和数据集已在网上(https://github.com/yhx-hit/CVPHD)提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters 工程技术-地球化学与地球物理
CiteScore
7.60
自引率
12.50%
发文量
1113
审稿时长
3.4 months
期刊介绍: IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.
期刊最新文献
Target-driven Real-time Geometric Processing Based on VLR Model for LuoJia3-02 Satellite A “Difference In Difference” based method for unsupervised change detection in season-varying images On the Potential of Orbital VHF Sounding Radars to Locate Shallow Aquifers in Arid Areas Using Reflectometry A two-branch neural network for gas-bearing prediction using latent space adaptation for data augmentation-An application for deep carbonate reservoirs AccuLiteFastNet: A Remote Sensing Object Detection Model Combining High Accuracy, Lightweight Design, and Fast Inference Speed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1