{"title":"A Cognitive Multi-Carrier Radar for Communication Interference Avoidance via Deep Reinforcement Learning","authors":"Zhao Shan;Pengfei Liu;Lei Wang;Yimin Liu","doi":"10.1109/TCCN.2023.3306854","DOIUrl":null,"url":null,"abstract":"Spectrum sharing between the radar and communication systems has become increasingly prevalent in recent years, therefore reducing the communication interference is a critical issue for radar. Deep reinforcement learning (DRL) based frequency allocation is a popular approach to solving the problem, especially in the highly dynamic spectrum. However, most DRL based methods suffer from low training efficiency due to the limited channel state information (CSI). To address the challenge, we propose a cognitive multi-carrier radar (CMCR), which acquires more CSI in one transmission and thus can learn the spectrum evolution faster. The frequency allocation problem for the CMCR is formulated as a partially observable Markov decision process which is hard to solve due to the combinatorial action space. To this end, we use the Iteratively Selecting approach along with the Proximal Policy Optimization (ISPPO) to solve it. To further enhance the performance of the CMCR in a short-term task, we pre-train the policy with model agnostic meta learning (MAML). Simulation results show that the CMCR learns fast and achieves an excellent detection ability in a congested spectrum on the basis of the ISPPO method. Besides, we also illustrate the efficiency of the MAML pre-training.","PeriodicalId":13069,"journal":{"name":"IEEE Transactions on Cognitive Communications and Networking","volume":"9 6","pages":"1561-1578"},"PeriodicalIF":7.4000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10225362/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Spectrum sharing between the radar and communication systems has become increasingly prevalent in recent years, therefore reducing the communication interference is a critical issue for radar. Deep reinforcement learning (DRL) based frequency allocation is a popular approach to solving the problem, especially in the highly dynamic spectrum. However, most DRL based methods suffer from low training efficiency due to the limited channel state information (CSI). To address the challenge, we propose a cognitive multi-carrier radar (CMCR), which acquires more CSI in one transmission and thus can learn the spectrum evolution faster. The frequency allocation problem for the CMCR is formulated as a partially observable Markov decision process which is hard to solve due to the combinatorial action space. To this end, we use the Iteratively Selecting approach along with the Proximal Policy Optimization (ISPPO) to solve it. To further enhance the performance of the CMCR in a short-term task, we pre-train the policy with model agnostic meta learning (MAML). Simulation results show that the CMCR learns fast and achieves an excellent detection ability in a congested spectrum on the basis of the ISPPO method. Besides, we also illustrate the efficiency of the MAML pre-training.
期刊介绍:
The IEEE Transactions on Cognitive Communications and Networking (TCCN) aims to publish high-quality manuscripts that push the boundaries of cognitive communications and networking research. Cognitive, in this context, refers to the application of perception, learning, reasoning, memory, and adaptive approaches in communication system design. The transactions welcome submissions that explore various aspects of cognitive communications and networks, focusing on innovative and holistic approaches to complex system design. Key topics covered include architecture, protocols, cross-layer design, and cognition cycle design for cognitive networks. Additionally, research on machine learning, artificial intelligence, end-to-end and distributed intelligence, software-defined networking, cognitive radios, spectrum sharing, and security and privacy issues in cognitive networks are of interest. The publication also encourages papers addressing novel services and applications enabled by these cognitive concepts.