Yi Zheng;Ji Wang;Xingwang Li;Jiping Li;Shouyin Liu
{"title":"Cell-Level RSRP Estimation With the Image-to-Image Wireless Propagation Model Based on Measured Data","authors":"Yi Zheng;Ji Wang;Xingwang Li;Jiping Li;Shouyin Liu","doi":"10.1109/TCCN.2023.3307945","DOIUrl":null,"url":null,"abstract":"Wireless propagation models play a significant role in the deployments of base stations that are used to the reference signal receiving power (RSRP) of signal receivers in a cell. However, the existing models predict the RSRP of one receiver point in a cell at a time, which cannot be generalized to other cells. Motivated by this, a cell-level RSRP estimation method is proposed to directly predict the whole-cell RSRP by converting the RSRP estimation into an image-to-image translation. First, an environment map of each cell and measured RSRP for each cell is transformed into an image. Second, a cell-level image-to-image wireless propagation model based on conditional generative adversarial networks is proposed, which can directly predict the whole-cell RSRP at a time. In particular, a residual estimation method is proposed for the measurement RSRP data in the real world. The proposed method employs an empirical model to reveal the wireless propagation law as a priori knowledge and guide the training steps of the deep learning model. Finally, the experimental results verify the accuracy and generalization performance of the proposed image-to-image wireless propagation model.","PeriodicalId":13069,"journal":{"name":"IEEE Transactions on Cognitive Communications and Networking","volume":"9 6","pages":"1412-1423"},"PeriodicalIF":7.4000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10227351/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless propagation models play a significant role in the deployments of base stations that are used to the reference signal receiving power (RSRP) of signal receivers in a cell. However, the existing models predict the RSRP of one receiver point in a cell at a time, which cannot be generalized to other cells. Motivated by this, a cell-level RSRP estimation method is proposed to directly predict the whole-cell RSRP by converting the RSRP estimation into an image-to-image translation. First, an environment map of each cell and measured RSRP for each cell is transformed into an image. Second, a cell-level image-to-image wireless propagation model based on conditional generative adversarial networks is proposed, which can directly predict the whole-cell RSRP at a time. In particular, a residual estimation method is proposed for the measurement RSRP data in the real world. The proposed method employs an empirical model to reveal the wireless propagation law as a priori knowledge and guide the training steps of the deep learning model. Finally, the experimental results verify the accuracy and generalization performance of the proposed image-to-image wireless propagation model.
期刊介绍:
The IEEE Transactions on Cognitive Communications and Networking (TCCN) aims to publish high-quality manuscripts that push the boundaries of cognitive communications and networking research. Cognitive, in this context, refers to the application of perception, learning, reasoning, memory, and adaptive approaches in communication system design. The transactions welcome submissions that explore various aspects of cognitive communications and networks, focusing on innovative and holistic approaches to complex system design. Key topics covered include architecture, protocols, cross-layer design, and cognition cycle design for cognitive networks. Additionally, research on machine learning, artificial intelligence, end-to-end and distributed intelligence, software-defined networking, cognitive radios, spectrum sharing, and security and privacy issues in cognitive networks are of interest. The publication also encourages papers addressing novel services and applications enabled by these cognitive concepts.