Optimizing Sample Delivery in RF-Charging Multi-Hop IoT Networks

IF 5.3 2区 计算机科学 Q1 TELECOMMUNICATIONS IEEE Transactions on Green Communications and Networking Pub Date : 2023-09-04 DOI:10.1109/TGCN.2023.3311590
Muchen Jiang;Kwan-Wu Chin
{"title":"Optimizing Sample Delivery in RF-Charging Multi-Hop IoT Networks","authors":"Muchen Jiang;Kwan-Wu Chin","doi":"10.1109/TGCN.2023.3311590","DOIUrl":null,"url":null,"abstract":"This paper studies sample delivery in a multi-hop network where a power beacon charges devices via radio frequency (RF) signals. Devices forward samples with a deadline from a source to a sink. The goal is to minimize the power beacon’s transmit power and guarantee that samples arrive at the sink with probability \n<inline-formula> <tex-math>$(1-\\epsilon)$ </tex-math></inline-formula>\n by their deadline, where \n<inline-formula> <tex-math>$\\epsilon $ </tex-math></inline-formula>\n is a given probability of failure. A key challenge is that the power beacon does not have instantaneous channel gains information to devices and also between devices; i.e., it does not know the energy level of devices. To this end, we formulate a chance-constrained stochastic program for the problem at hand, and employ the sample-average approximation (SAA) method to compute a solution. We also outline two novel approximation methods: Sampling based Probabilistic Optimal Power Allocation (S-POPA) and Bayesian Optimization based Probabilistic Optimal Power Allocation (BO-POPA). Briefly, S-POPA generates a set of candidate solutions and iteratively learns the solution that returns a high probability of success. On the other hand, BO-POPA applies the Bayesian optimization framework to construct a surrogate model to predict the reward value of transmit power allocations. Numerical results show that the performance of S-POPA and BO-POPA achieves on average 86.91% and 79.25% of the transmit power computed by SAA.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Green Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10238843/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies sample delivery in a multi-hop network where a power beacon charges devices via radio frequency (RF) signals. Devices forward samples with a deadline from a source to a sink. The goal is to minimize the power beacon’s transmit power and guarantee that samples arrive at the sink with probability $(1-\epsilon)$ by their deadline, where $\epsilon $ is a given probability of failure. A key challenge is that the power beacon does not have instantaneous channel gains information to devices and also between devices; i.e., it does not know the energy level of devices. To this end, we formulate a chance-constrained stochastic program for the problem at hand, and employ the sample-average approximation (SAA) method to compute a solution. We also outline two novel approximation methods: Sampling based Probabilistic Optimal Power Allocation (S-POPA) and Bayesian Optimization based Probabilistic Optimal Power Allocation (BO-POPA). Briefly, S-POPA generates a set of candidate solutions and iteratively learns the solution that returns a high probability of success. On the other hand, BO-POPA applies the Bayesian optimization framework to construct a surrogate model to predict the reward value of transmit power allocations. Numerical results show that the performance of S-POPA and BO-POPA achieves on average 86.91% and 79.25% of the transmit power computed by SAA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化射频充电多跳物联网网络中的样本传输
本文研究了多跳网络中的样本传输问题,在该网络中,功率信标通过射频(RF)信号为设备充电。设备在截止日期前将样本从源发送到汇。目标是最大限度地降低功率信标的发射功率,并保证样本在截止日期前以 $(1-\epsilon)$ 的概率到达汇,其中 $\epsilon $ 是给定的失败概率。一个关键的挑战是,功率信标并不掌握设备与设备之间的瞬时信道增益信息;也就是说,它不知道设备的能量水平。为此,我们为当前问题制定了一个机会受限随机程序,并采用样本平均近似(SAA)方法来计算解决方案。我们还概述了两种新型近似方法:基于采样的概率最优功率分配 (S-POPA) 和基于贝叶斯优化的概率最优功率分配 (BO-POPA)。简而言之,S-POPA 生成一组候选解决方案,并迭代学习返回高成功概率的解决方案。另一方面,BO-POPA 应用贝叶斯优化框架来构建一个代理模型,以预测发射功率分配的奖励值。数值结果表明,S-POPA 和 BO-POPA 的性能平均达到 SAA 计算的发射功率的 86.91% 和 79.25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Green Communications and Networking
IEEE Transactions on Green Communications and Networking Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
6.20%
发文量
181
期刊最新文献
Table of Contents Guest Editorial Special Issue on Green Open Radio Access Networks: Architecture, Challenges, Opportunities, and Use Cases IEEE Transactions on Green Communications and Networking IEEE Communications Society Information HSADR: A New Highly Secure Aggregation and Dropout-Resilient Federated Learning Scheme for Radio Access Networks With Edge Computing Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1