Zhu Teng, Junliang Xing, Qiang Wang, Baopeng Zhang, Jianping Fan
{"title":"Deep Spatial and Temporal Network for Robust Visual Object Tracking.","authors":"Zhu Teng, Junliang Xing, Qiang Wang, Baopeng Zhang, Jianping Fan","doi":"10.1109/TIP.2019.2942502","DOIUrl":null,"url":null,"abstract":"<p><p>There are two key components that can be leveraged for visual tracking: (a) object appearances; and (b) object motions. Many existing techniques have recently employed deep learning to enhance visual tracking due to its superior representation power and strong learning ability, where most of them employed object appearances but few of them exploited object motions. In this work, a deep spatial and temporal network (DSTN) is developed for visual tracking by explicitly exploiting both the object representations from each frame and their dynamics along multiple frames in a video, such that it can seamlessly integrate the object appearances with their motions to produce compact object appearances and capture their temporal variations effectively. Our DSTN method, which is deployed into a tracking pipeline in a coarse-to-fine form, can perceive the subtle differences on spatial and temporal variations of the target (object being tracked), and thus it benefits from both off-line training and online fine-tuning. We have also conducted our experiments over four largest tracking benchmarks, including OTB-2013, OTB-2015, VOT2015, and VOT2017, and our experimental results have demonstrated that our DSTN method can achieve competitive performance as compared with the state-of-the-art techniques. The source code, trained models, and all the experimental results of this work will be made public available to facilitate further studies on this problem.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2942502","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
There are two key components that can be leveraged for visual tracking: (a) object appearances; and (b) object motions. Many existing techniques have recently employed deep learning to enhance visual tracking due to its superior representation power and strong learning ability, where most of them employed object appearances but few of them exploited object motions. In this work, a deep spatial and temporal network (DSTN) is developed for visual tracking by explicitly exploiting both the object representations from each frame and their dynamics along multiple frames in a video, such that it can seamlessly integrate the object appearances with their motions to produce compact object appearances and capture their temporal variations effectively. Our DSTN method, which is deployed into a tracking pipeline in a coarse-to-fine form, can perceive the subtle differences on spatial and temporal variations of the target (object being tracked), and thus it benefits from both off-line training and online fine-tuning. We have also conducted our experiments over four largest tracking benchmarks, including OTB-2013, OTB-2015, VOT2015, and VOT2017, and our experimental results have demonstrated that our DSTN method can achieve competitive performance as compared with the state-of-the-art techniques. The source code, trained models, and all the experimental results of this work will be made public available to facilitate further studies on this problem.
期刊介绍:
The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.