Two-Dimensional Quaternion Sparse Discriminant Analysis.

IF 10.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Image Processing Pub Date : 2019-10-28 DOI:10.1109/TIP.2019.2947775
Xiaolin Xiao, Yongyong Chen, Yue-Jiao Gong, Yicong Zhou
{"title":"Two-Dimensional Quaternion Sparse Discriminant Analysis.","authors":"Xiaolin Xiao, Yongyong Chen, Yue-Jiao Gong, Yicong Zhou","doi":"10.1109/TIP.2019.2947775","DOIUrl":null,"url":null,"abstract":"<p><p>Linear discriminant analysis has been incorporated with various representations and measurements for dimension reduction and feature extraction. In this paper, we propose two-dimensional quaternion sparse discriminant analysis (2D-QSDA) that meets the requirements of representing RGB and RGB-D images. 2D-QSDA advances in three aspects: 1) including sparse regularization, 2D-QSDA relies only on the important variables, and thus shows good generalization ability to the out-of-sample data which are unseen during the training phase; 2) benefited from quaternion representation, 2D-QSDA well preserves the high order correlation among different image channels and provides a unified approach to extract features from RGB and RGB-D images; 3) the spatial structure of the input images is retained via the matrix-based processing. We tackle the constrained trace ratio problem of 2D-QSDA by solving a corresponding constrained trace difference problem, which is then transformed into a quaternion sparse regression (QSR) model. Afterward, we reformulate the QSR model to an equivalent complex form to avoid the processing of the complicated structure of quaternions. A nested iterative algorithm is designed to learn the solution of 2D-QSDA in the complex space and then we convert this solution back to the quaternion domain. To improve the separability of 2D-QSDA, we further propose 2D-QSDAw using the weighted pairwise between-class distances. Extensive experiments on RGB and RGB-D databases demonstrate the effectiveness of 2D-QSDA and 2D-QSDAw compared with peer competitors.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2947775","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Linear discriminant analysis has been incorporated with various representations and measurements for dimension reduction and feature extraction. In this paper, we propose two-dimensional quaternion sparse discriminant analysis (2D-QSDA) that meets the requirements of representing RGB and RGB-D images. 2D-QSDA advances in three aspects: 1) including sparse regularization, 2D-QSDA relies only on the important variables, and thus shows good generalization ability to the out-of-sample data which are unseen during the training phase; 2) benefited from quaternion representation, 2D-QSDA well preserves the high order correlation among different image channels and provides a unified approach to extract features from RGB and RGB-D images; 3) the spatial structure of the input images is retained via the matrix-based processing. We tackle the constrained trace ratio problem of 2D-QSDA by solving a corresponding constrained trace difference problem, which is then transformed into a quaternion sparse regression (QSR) model. Afterward, we reformulate the QSR model to an equivalent complex form to avoid the processing of the complicated structure of quaternions. A nested iterative algorithm is designed to learn the solution of 2D-QSDA in the complex space and then we convert this solution back to the quaternion domain. To improve the separability of 2D-QSDA, we further propose 2D-QSDAw using the weighted pairwise between-class distances. Extensive experiments on RGB and RGB-D databases demonstrate the effectiveness of 2D-QSDA and 2D-QSDAw compared with peer competitors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维四元稀疏判别分析
线性判别分析已与各种表示方法和测量方法相结合,用于降维和特征提取。本文提出的二维四元数稀疏判别分析(2D-QSDA)可满足表示 RGB 和 RGB-D 图像的要求。2D-QSDA 在三个方面取得了进展:1)通过稀疏正则化,2D-QSDA 仅依赖于重要变量,因此对训练阶段未见的样本外数据具有良好的泛化能力;2)得益于四元数表示,2D-QSDA 很好地保留了不同图像通道之间的高阶相关性,为从 RGB 和 RGB-D 图像中提取特征提供了一种统一的方法;3)通过基于矩阵的处理保留了输入图像的空间结构。我们通过求解相应的受约束迹差问题来解决 2D-QSDA 的受约束迹比问题,然后将其转化为四元数稀疏回归(QSR)模型。之后,我们将 QSR 模型重新表述为等效复数形式,以避免处理复杂的四元数结构。我们设计了一种嵌套迭代算法来学习复数空间中的二维-QSDA 解,然后将此解转换回四元数域。为了提高 2D-QSDA 的可分离性,我们进一步提出了使用加权成对类间距离的 2D-QSDAw。在 RGB 和 RGB-D 数据库上进行的大量实验证明,与同类竞争产品相比,2D-QSDA 和 2D-QSDAw 非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Image Processing
IEEE Transactions on Image Processing 工程技术-工程:电子与电气
CiteScore
20.90
自引率
6.60%
发文量
774
审稿时长
7.6 months
期刊介绍: The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.
期刊最新文献
GeodesicPSIM: Predicting the Quality of Static Mesh with Texture Map via Geodesic Patch Similarity A Versatile Framework for Unsupervised Domain Adaptation based on Instance Weighting Revisiting Domain-Adaptive Semantic Segmentation via Knowledge Distillation RegSeg: An End-to-End Network for Multimodal RGB-Thermal Registration and Semantic Segmentation Salient Object Detection in RGB-D Videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1