Compensation of Loudspeaker–Room Responses in a Robust MIMO Control Framework

Lars-Johan Brännmark, A. Bahne, A. Ahlén
{"title":"Compensation of Loudspeaker–Room Responses in a Robust MIMO Control Framework","authors":"Lars-Johan Brännmark, A. Bahne, A. Ahlén","doi":"10.1109/TASL.2013.2245650","DOIUrl":null,"url":null,"abstract":"A new multichannel approach to robust broadband loudspeaker-room equalization is presented. Traditionally, the equalization (or room correction) problem has been treated primarily by single-channel methods, where loudspeaker input signals are prefiltered individually by separate scalar filters. Single-channel methods are generally able to improve the average spectral flatness of the acoustic transfer functions in a listening region, but they cannot reduce the variability of the transfer functions within the region. Most modern audio reproduction systems, however, contain two or more loudspeakers, and in this paper we aim at improving the equalization performance by using all available loudspeakers jointly. To this end we propose a polynomial based MIMO formulation of the equalization problem. The new approach, which is a generalization of an earlier single-channel approach by the authors, is found to reduce the average reproduction error and the transfer function variability over a region in space. Moreover, pre-ringing artifacts are avoided, and the reproduction error below 1000 Hz is significantly reduced with an amount that scales with the number of loudspeakers used.","PeriodicalId":55014,"journal":{"name":"IEEE Transactions on Audio Speech and Language Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TASL.2013.2245650","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Audio Speech and Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASL.2013.2245650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

A new multichannel approach to robust broadband loudspeaker-room equalization is presented. Traditionally, the equalization (or room correction) problem has been treated primarily by single-channel methods, where loudspeaker input signals are prefiltered individually by separate scalar filters. Single-channel methods are generally able to improve the average spectral flatness of the acoustic transfer functions in a listening region, but they cannot reduce the variability of the transfer functions within the region. Most modern audio reproduction systems, however, contain two or more loudspeakers, and in this paper we aim at improving the equalization performance by using all available loudspeakers jointly. To this end we propose a polynomial based MIMO formulation of the equalization problem. The new approach, which is a generalization of an earlier single-channel approach by the authors, is found to reduce the average reproduction error and the transfer function variability over a region in space. Moreover, pre-ringing artifacts are avoided, and the reproduction error below 1000 Hz is significantly reduced with an amount that scales with the number of loudspeakers used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鲁棒MIMO控制框架下扬声器-房间响应补偿
提出了一种新的多通道宽带扩音室鲁棒均衡方法。传统上,均衡(或房间校正)问题主要通过单通道方法处理,其中扬声器输入信号由单独的标量滤波器单独预滤波。单通道方法一般能够提高聆听区域内声学传递函数的平均频谱平坦度,但不能降低该区域内传递函数的可变性。然而,大多数现代音频重放系统包含两个或多个扬声器,在本文中,我们旨在通过联合使用所有可用的扬声器来提高均衡性能。为此,我们提出了一种基于多项式的MIMO均衡问题公式。新方法是作者早期的单通道方法的推广,发现可以减少空间区域内的平均再现误差和传递函数变异性。此外,避免了预振铃伪影,并且随着所使用的扬声器数量的增加,显着降低了低于1000 Hz的再现误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Audio Speech and Language Processing
IEEE Transactions on Audio Speech and Language Processing 工程技术-工程:电子与电气
自引率
0.00%
发文量
0
审稿时长
24.0 months
期刊介绍: The IEEE Transactions on Audio, Speech and Language Processing covers the sciences, technologies and applications relating to the analysis, coding, enhancement, recognition and synthesis of audio, music, speech and language. In particular, audio processing also covers auditory modeling, acoustic modeling and source separation. Speech processing also covers speech production and perception, adaptation, lexical modeling and speaker recognition. Language processing also covers spoken language understanding, translation, summarization, mining, general language modeling, as well as spoken dialog systems.
期刊最新文献
A High-Quality Speech and Audio Codec With Less Than 10-ms Delay Efficient Approximation of Head-Related Transfer Functions in Subbands for Accurate Sound Localization. Epoch Extraction Based on Integrated Linear Prediction Residual Using Plosion Index Body Conducted Speech Enhancement by Equalization and Signal Fusion Soundfield Imaging in the Ray Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1