{"title":"Area Efficient Computing-in-Memory Architecture Using STT/SOT Hybrid Three Level Cell","authors":"Seema Dhull;Arshid Nisar;Rakesh Bhat;Brajesh Kumar Kaushik","doi":"10.1109/OJNANO.2022.3166959","DOIUrl":null,"url":null,"abstract":"Spintronic-based computing-in-memory (CiM) architecture has emerged as one of the efficient solutions to counter the latency/bandwidth bottleneck of conventional von-Neumann architecture. However, computation within a small area while achieving low power consumption still remains a challenge. Multi-bit spintronic storage device is a suitable solution to improve the integration density of such architectures. This paper focuses on using spin-transfer torque (STT)/spin-orbit torque (SOT) based hybrid three-level cell (TLC) in CiM application for implementing logic circuits such as AND, XOR, and magnetic full adder (MFA). Moreover, the performance of the STT/SOT-TLC-based MFA is compared with other full adder designs. The results show that the proposed MFA is 75% more area-efficient in comparison to two-bit STT and SOT-based designs, and 50% more area-efficient in comparison to differential spin hall effect (DSHE) based designs","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"3 ","pages":"45-51"},"PeriodicalIF":1.8000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9756330","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9756330/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Spintronic-based computing-in-memory (CiM) architecture has emerged as one of the efficient solutions to counter the latency/bandwidth bottleneck of conventional von-Neumann architecture. However, computation within a small area while achieving low power consumption still remains a challenge. Multi-bit spintronic storage device is a suitable solution to improve the integration density of such architectures. This paper focuses on using spin-transfer torque (STT)/spin-orbit torque (SOT) based hybrid three-level cell (TLC) in CiM application for implementing logic circuits such as AND, XOR, and magnetic full adder (MFA). Moreover, the performance of the STT/SOT-TLC-based MFA is compared with other full adder designs. The results show that the proposed MFA is 75% more area-efficient in comparison to two-bit STT and SOT-based designs, and 50% more area-efficient in comparison to differential spin hall effect (DSHE) based designs
基于自旋电子学的内存计算(CiM)体系结构已成为克服传统冯-诺伊曼体系结构延迟/带宽瓶颈的有效解决方案之一。然而,在小范围内实现低功耗的计算仍然是一个挑战。多比特自旋电子存储器件是提高此类体系结构集成密度的合适解决方案。本文重点研究了基于自旋-传递扭矩(STT)/自旋-轨道扭矩(SOT)的混合三能级单元(TLC)在CiM中的应用,用于实现与、异或和磁全加法器(MFA)等逻辑电路。此外,将基于STT/ sot - tlc的MFA与其他全加法器设计的性能进行了比较。结果表明,与基于2位STT和sot的设计相比,所提出的MFA的面积效率提高了75%,与基于差分自旋霍尔效应(DSHE)的设计相比,面积效率提高了50%