Hybrid Spintronics/CMOS Logic Circuits Using All-Optical-Enabled Magnetic Tunnel Junction

IF 1.8 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY IEEE Open Journal of Nanotechnology Pub Date : 2022-07-06 DOI:10.1109/OJNANO.2022.3188768
Surya Narain Dikshit;Arshid Nisar;Seema Dhull;Namita Bindal;Brajesh Kumar Kaushik
{"title":"Hybrid Spintronics/CMOS Logic Circuits Using All-Optical-Enabled Magnetic Tunnel Junction","authors":"Surya Narain Dikshit;Arshid Nisar;Seema Dhull;Namita Bindal;Brajesh Kumar Kaushik","doi":"10.1109/OJNANO.2022.3188768","DOIUrl":null,"url":null,"abstract":"Spintronics is one of the emerging fields for next-generation low power, high endurance, non-volatile, and area efficient memory technology. Spin torque transfer (STT), spin orbit torque (SOT), and electric field assisted switching mechanisms have been used to switch magnetization in various spintronic devices. However, their operation speed is fundamentally limited by the spin precession time that typically ranges in 10–400 ps. Such a time constraint severely limits the possible operation of these devices in high-speed systems. Optical switching using ultrashort laser pulses, on the other hand, is able to achieve sub-picosecond switching operation in magnetic tunnel junctions (MTJs). In this paper, all optically switched (AOS) MTJ has been used to design high speed and low power hybrid MTJ/CMOS based logic circuits such as AND/NAND, XOR/XNOR, and full adder. Owing to the ultra-fast switching operation of AOS-MTJ, the circuit level results show that the energy and speed of AOS-MTJ based logic circuits are improved by 85% and 97%, respectively, when compared to STT based circuits. In comparison to SOT based designs, the proposed logic circuits show 10% and 91% improvement in energy efficiency and speed, respectively.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"3 ","pages":"85-93"},"PeriodicalIF":1.8000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9815875","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9815875/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Spintronics is one of the emerging fields for next-generation low power, high endurance, non-volatile, and area efficient memory technology. Spin torque transfer (STT), spin orbit torque (SOT), and electric field assisted switching mechanisms have been used to switch magnetization in various spintronic devices. However, their operation speed is fundamentally limited by the spin precession time that typically ranges in 10–400 ps. Such a time constraint severely limits the possible operation of these devices in high-speed systems. Optical switching using ultrashort laser pulses, on the other hand, is able to achieve sub-picosecond switching operation in magnetic tunnel junctions (MTJs). In this paper, all optically switched (AOS) MTJ has been used to design high speed and low power hybrid MTJ/CMOS based logic circuits such as AND/NAND, XOR/XNOR, and full adder. Owing to the ultra-fast switching operation of AOS-MTJ, the circuit level results show that the energy and speed of AOS-MTJ based logic circuits are improved by 85% and 97%, respectively, when compared to STT based circuits. In comparison to SOT based designs, the proposed logic circuits show 10% and 91% improvement in energy efficiency and speed, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用全光磁隧道结的混合自旋电子学/CMOS逻辑电路
自旋电子学是下一代低功耗、高寿命、非易失性和面积高效存储技术的新兴领域之一。自旋转矩传递(STT)、自旋轨道转矩(SOT)和电场辅助开关机制已被用于各种自旋电子器件的磁化开关。然而,它们的运行速度基本上受到自旋进动时间的限制,通常在10 - 400ps之间。这种时间限制严重限制了这些设备在高速系统中运行的可能性。另一方面,使用超短激光脉冲的光开关可以在磁隧道结(MTJs)中实现亚皮秒的开关操作。在本文中,全光开关(AOS) MTJ被用于设计高速和低功耗的基于MTJ/CMOS的混合逻辑电路,如and /NAND、XOR/XNOR和全加法器。由于AOS-MTJ的超快速开关操作,电路级结果表明,与基于STT的电路相比,基于AOS-MTJ的逻辑电路的能量和速度分别提高了85%和97%。与基于SOT的设计相比,所提出的逻辑电路在能源效率和速度方面分别提高了10%和91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
17.60%
发文量
10
审稿时长
12 weeks
期刊最新文献
High-Performance Dielectric Modulated Epitaxial Tunnel Layer Tunnel FET for Label-Free Detection of Biomolecules Portable and Cost-Effective Handheld Ultrasound System Utilizing FPGA-Based Synthetic Aperture Imaging Polarization and Strain in Piezoelectric Nanomaterials: Advancing Sensing Applications in Biomedical Technology Manipulation of 2D and 3D Magnetic Solitons Under the Influence of DMI Gradients Gallium Sulfide-Immobilized Optical Fiber-Based SPR Sensor for Detection of Brilliant Blue Food Adulteration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1