Dynamic Combination of Automatic Speech Recognition Systems by Driven Decoding

B. Lecouteux, G. Linarès, Y. Estève, G. Gravier
{"title":"Dynamic Combination of Automatic Speech Recognition Systems by Driven Decoding","authors":"B. Lecouteux, G. Linarès, Y. Estève, G. Gravier","doi":"10.1109/TASL.2013.2248716","DOIUrl":null,"url":null,"abstract":"Combining automatic speech recognition (ASR) systems generally relies on the posterior merging of the outputs or on acoustic cross-adaptation. In this paper, we propose an integrated approach where outputs of secondary systems are integrated in the search algorithm of a primary one. In this driven decoding algorithm (DDA), the secondary systems are viewed as observation sources that should be evaluated and combined to others by a primary search algorithm. DDA is evaluated on a subset of the ESTER I corpus consisting of 4 hours of French radio broadcast news. Results demonstrate DDA significantly outperforms vote-based approaches: we obtain an improvement of 14.5% relative word error rate over the best single-systems, as opposed to the the 6.7% with a ROVER combination. An in-depth analysis of the DDA shows its ability to improve robustness (gains are greater in adverse conditions) and a relatively low dependency on the search algorithm. The application of DDA to both and beam-search-based decoder yields similar performances.","PeriodicalId":55014,"journal":{"name":"IEEE Transactions on Audio Speech and Language Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TASL.2013.2248716","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Audio Speech and Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASL.2013.2248716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Combining automatic speech recognition (ASR) systems generally relies on the posterior merging of the outputs or on acoustic cross-adaptation. In this paper, we propose an integrated approach where outputs of secondary systems are integrated in the search algorithm of a primary one. In this driven decoding algorithm (DDA), the secondary systems are viewed as observation sources that should be evaluated and combined to others by a primary search algorithm. DDA is evaluated on a subset of the ESTER I corpus consisting of 4 hours of French radio broadcast news. Results demonstrate DDA significantly outperforms vote-based approaches: we obtain an improvement of 14.5% relative word error rate over the best single-systems, as opposed to the the 6.7% with a ROVER combination. An in-depth analysis of the DDA shows its ability to improve robustness (gains are greater in adverse conditions) and a relatively low dependency on the search algorithm. The application of DDA to both and beam-search-based decoder yields similar performances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于驱动解码的语音自动识别系统动态组合
组合自动语音识别(ASR)系统通常依赖于输出的后验合并或声学交叉适应。在本文中,我们提出了一个集成的方法,其中二次系统的输出集成在初级系统的搜索算法。在这种驱动解码算法(DDA)中,次要系统被视为观测源,应该通过主要搜索算法对其进行评估和组合。DDA在ESTER I语料库的一个子集上进行评估,该语料库由4小时的法语广播新闻组成。结果表明,DDA显著优于基于投票的方法:与最佳的单一系统相比,我们获得了14.5%的相对单词错误率提高,而与ROVER组合相比,错误率提高了6.7%。对DDA的深入分析表明,它能够提高鲁棒性(在不利条件下收益更大),并且对搜索算法的依赖性相对较低。将DDA应用于基于波束搜索的解码器和基于波束搜索的解码器可以获得相似的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Audio Speech and Language Processing
IEEE Transactions on Audio Speech and Language Processing 工程技术-工程:电子与电气
自引率
0.00%
发文量
0
审稿时长
24.0 months
期刊介绍: The IEEE Transactions on Audio, Speech and Language Processing covers the sciences, technologies and applications relating to the analysis, coding, enhancement, recognition and synthesis of audio, music, speech and language. In particular, audio processing also covers auditory modeling, acoustic modeling and source separation. Speech processing also covers speech production and perception, adaptation, lexical modeling and speaker recognition. Language processing also covers spoken language understanding, translation, summarization, mining, general language modeling, as well as spoken dialog systems.
期刊最新文献
A High-Quality Speech and Audio Codec With Less Than 10-ms Delay Efficient Approximation of Head-Related Transfer Functions in Subbands for Accurate Sound Localization. Epoch Extraction Based on Integrated Linear Prediction Residual Using Plosion Index Body Conducted Speech Enhancement by Equalization and Signal Fusion Soundfield Imaging in the Ray Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1