Joint Discriminative Decoding of Words and Semantic Tags for Spoken Language Understanding

Anoop Deoras, Gökhan Tür, R. Sarikaya, Dilek Z. Hakkani-Tür
{"title":"Joint Discriminative Decoding of Words and Semantic Tags for Spoken Language Understanding","authors":"Anoop Deoras, Gökhan Tür, R. Sarikaya, Dilek Z. Hakkani-Tür","doi":"10.1109/TASL.2013.2256894","DOIUrl":null,"url":null,"abstract":"Most Spoken Language Understanding (SLU) systems today employ a cascade approach, where the best hypothesis from Automatic Speech Recognizer (ASR) is fed into understanding modules such as slot sequence classifiers and intent detectors. The output of these modules is then further fed into downstream components such as interpreter and/or knowledge broker. These statistical models are usually trained individually to optimize the error rate of their respective output. In such approaches, errors from one module irreversibly propagates into other modules causing a serious degradation in the overall performance of the SLU system. Thus it is desirable to jointly optimize all the statistical models together. As a first step towards this, in this paper, we propose a joint decoding framework in which we predict the optimal word as well as slot sequence (semantic tag sequence) jointly given the input acoustic stream. Furthermore, the improved recognition output is then used for an utterance classification task, specifically, we focus on intent detection task. On a SLU task, we show 1.5% absolute reduction (7.6% relative reduction) in word error rate (WER) and 1.2% absolute improvement in F measure for slot prediction when compared to a very strong cascade baseline comprising of state-of-the-art large vocabulary ASR followed by conditional random field (CRF) based slot sequence tagger. Similarly, for intent detection, we show 1.2% absolute reduction (12% relative reduction) in classification error rate.","PeriodicalId":55014,"journal":{"name":"IEEE Transactions on Audio Speech and Language Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TASL.2013.2256894","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Audio Speech and Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASL.2013.2256894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Most Spoken Language Understanding (SLU) systems today employ a cascade approach, where the best hypothesis from Automatic Speech Recognizer (ASR) is fed into understanding modules such as slot sequence classifiers and intent detectors. The output of these modules is then further fed into downstream components such as interpreter and/or knowledge broker. These statistical models are usually trained individually to optimize the error rate of their respective output. In such approaches, errors from one module irreversibly propagates into other modules causing a serious degradation in the overall performance of the SLU system. Thus it is desirable to jointly optimize all the statistical models together. As a first step towards this, in this paper, we propose a joint decoding framework in which we predict the optimal word as well as slot sequence (semantic tag sequence) jointly given the input acoustic stream. Furthermore, the improved recognition output is then used for an utterance classification task, specifically, we focus on intent detection task. On a SLU task, we show 1.5% absolute reduction (7.6% relative reduction) in word error rate (WER) and 1.2% absolute improvement in F measure for slot prediction when compared to a very strong cascade baseline comprising of state-of-the-art large vocabulary ASR followed by conditional random field (CRF) based slot sequence tagger. Similarly, for intent detection, we show 1.2% absolute reduction (12% relative reduction) in classification error rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
词语和语义标签联合判别解码在口语理解中的应用
今天大多数口语理解(SLU)系统采用级联方法,其中自动语音识别器(ASR)的最佳假设被馈送到理解模块,如槽序列分类器和意图检测器。然后将这些模块的输出进一步馈送到下游组件,如解释器和/或知识代理。这些统计模型通常单独训练,以优化各自输出的错误率。在这种方法中,来自一个模块的错误不可逆转地传播到其他模块,导致SLU系统的整体性能严重下降。因此,需要将所有统计模型联合起来进行优化。作为实现这一目标的第一步,在本文中,我们提出了一个联合解码框架,在该框架中,我们在给定输入声流的情况下联合预测最优词和槽序列(语义标签序列)。然后,将改进后的识别输出用于语音分类任务,特别是意图检测任务。在SLU任务中,与由最先进的大词汇量ASR和基于条件随机场(CRF)的槽序列标注器组成的强大级联基线相比,我们显示单词错误率(WER)绝对降低了1.5%(相对降低了7.6%),槽序列预测的F测量绝对提高了1.2%。同样,对于意图检测,我们显示分类错误率绝对降低了1.2%(相对降低了12%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Audio Speech and Language Processing
IEEE Transactions on Audio Speech and Language Processing 工程技术-工程:电子与电气
自引率
0.00%
发文量
0
审稿时长
24.0 months
期刊介绍: The IEEE Transactions on Audio, Speech and Language Processing covers the sciences, technologies and applications relating to the analysis, coding, enhancement, recognition and synthesis of audio, music, speech and language. In particular, audio processing also covers auditory modeling, acoustic modeling and source separation. Speech processing also covers speech production and perception, adaptation, lexical modeling and speaker recognition. Language processing also covers spoken language understanding, translation, summarization, mining, general language modeling, as well as spoken dialog systems.
期刊最新文献
A High-Quality Speech and Audio Codec With Less Than 10-ms Delay Efficient Approximation of Head-Related Transfer Functions in Subbands for Accurate Sound Localization. Epoch Extraction Based on Integrated Linear Prediction Residual Using Plosion Index Body Conducted Speech Enhancement by Equalization and Signal Fusion Soundfield Imaging in the Ray Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1