Analysis and Design of Multichannel Systems for Perceptual Sound Field Reconstruction

E. D. Sena, H. Hacıhabiboğlu, Z. Cvetković
{"title":"Analysis and Design of Multichannel Systems for Perceptual Sound Field Reconstruction","authors":"E. D. Sena, H. Hacıhabiboğlu, Z. Cvetković","doi":"10.1109/TASL.2013.2260152","DOIUrl":null,"url":null,"abstract":"This paper presents a systematic framework for the analysis and design of circular multichannel surround sound systems. Objective analysis based on the concept of active intensity fields shows that for stable rendition of monochromatic plane waves it is beneficial to render each such wave by no more than two channels. Based on that finding, we propose a methodology for the design of circular microphone arrays, in the same configuration as the corresponding loudspeaker system, which aims to capture inter-channel time and intensity differences that ensure accurate rendition of the auditory perspective. The methodology is applicable to regular and irregular microphone/speaker layouts, and a wide range of microphone array radii, including the special case of coincident arrays which corresponds to intensity-based systems. Several design examples, involving first and higher-order microphones are presented. Results of formal listening tests suggest that the proposed design methodology achieves a performance comparable to prior art in the center of the loudspeaker array and a more graceful degradation away from the center.","PeriodicalId":55014,"journal":{"name":"IEEE Transactions on Audio Speech and Language Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TASL.2013.2260152","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Audio Speech and Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASL.2013.2260152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

This paper presents a systematic framework for the analysis and design of circular multichannel surround sound systems. Objective analysis based on the concept of active intensity fields shows that for stable rendition of monochromatic plane waves it is beneficial to render each such wave by no more than two channels. Based on that finding, we propose a methodology for the design of circular microphone arrays, in the same configuration as the corresponding loudspeaker system, which aims to capture inter-channel time and intensity differences that ensure accurate rendition of the auditory perspective. The methodology is applicable to regular and irregular microphone/speaker layouts, and a wide range of microphone array radii, including the special case of coincident arrays which corresponds to intensity-based systems. Several design examples, involving first and higher-order microphones are presented. Results of formal listening tests suggest that the proposed design methodology achieves a performance comparable to prior art in the center of the loudspeaker array and a more graceful degradation away from the center.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多通道感知声场重构系统的分析与设计
本文提出了一个分析和设计圆形多声道环绕声系统的系统框架。基于有源强场概念的客观分析表明,为了稳定呈现单色平面波,最好将单色平面波呈现为不超过两个通道。基于这一发现,我们提出了一种圆形麦克风阵列的设计方法,其配置与相应的扬声器系统相同,旨在捕获通道间时间和强度差异,以确保听觉视角的准确呈现。该方法适用于规则和不规则的麦克风/扬声器布局,以及广泛的麦克风阵列半径范围,包括与基于强度的系统相对应的一致阵列的特殊情况。给出了几个设计实例,包括一阶和高阶麦克风。正式听力测试的结果表明,所提出的设计方法在扬声器阵列的中心实现了与现有技术相当的性能,并且在远离中心的地方实现了更优雅的退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Audio Speech and Language Processing
IEEE Transactions on Audio Speech and Language Processing 工程技术-工程:电子与电气
自引率
0.00%
发文量
0
审稿时长
24.0 months
期刊介绍: The IEEE Transactions on Audio, Speech and Language Processing covers the sciences, technologies and applications relating to the analysis, coding, enhancement, recognition and synthesis of audio, music, speech and language. In particular, audio processing also covers auditory modeling, acoustic modeling and source separation. Speech processing also covers speech production and perception, adaptation, lexical modeling and speaker recognition. Language processing also covers spoken language understanding, translation, summarization, mining, general language modeling, as well as spoken dialog systems.
期刊最新文献
A High-Quality Speech and Audio Codec With Less Than 10-ms Delay Efficient Approximation of Head-Related Transfer Functions in Subbands for Accurate Sound Localization. Epoch Extraction Based on Integrated Linear Prediction Residual Using Plosion Index Body Conducted Speech Enhancement by Equalization and Signal Fusion Soundfield Imaging in the Ray Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1