Unsupervised Methods for Speaker Diarization: An Integrated and Iterative Approach

Stephen Shum, N. Dehak, Réda Dehak, James R. Glass
{"title":"Unsupervised Methods for Speaker Diarization: An Integrated and Iterative Approach","authors":"Stephen Shum, N. Dehak, Réda Dehak, James R. Glass","doi":"10.1109/TASL.2013.2264673","DOIUrl":null,"url":null,"abstract":"In speaker diarization, standard approaches typically perform speaker clustering on some initial segmentation before refining the segment boundaries in a re-segmentation step to obtain a final diarization hypothesis. In this paper, we integrate an improved clustering method with an existing re-segmentation algorithm and, in iterative fashion, optimize both speaker cluster assignments and segmentation boundaries jointly. For clustering, we extend our previous research using factor analysis for speaker modeling. In continuing to take advantage of the effectiveness of factor analysis as a front-end for extracting speaker-specific features (i.e., i-vectors), we develop a probabilistic approach to speaker clustering by applying a Bayesian Gaussian Mixture Model (GMM) to principal component analysis (PCA)-processed i-vectors. We then utilize information at different temporal resolutions to arrive at an iterative optimization scheme that, in alternating between clustering and re-segmentation steps, demonstrates the ability to improve both speaker cluster assignments and segmentation boundaries in an unsupervised manner. Our proposed methods attain results that are comparable to those of a state-of-the-art benchmark set on the multi-speaker CallHome telephone corpus. We further compare our system with a Bayesian nonparametric approach to diarization and attempt to reconcile their differences in both methodology and performance.","PeriodicalId":55014,"journal":{"name":"IEEE Transactions on Audio Speech and Language Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TASL.2013.2264673","citationCount":"168","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Audio Speech and Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASL.2013.2264673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 168

Abstract

In speaker diarization, standard approaches typically perform speaker clustering on some initial segmentation before refining the segment boundaries in a re-segmentation step to obtain a final diarization hypothesis. In this paper, we integrate an improved clustering method with an existing re-segmentation algorithm and, in iterative fashion, optimize both speaker cluster assignments and segmentation boundaries jointly. For clustering, we extend our previous research using factor analysis for speaker modeling. In continuing to take advantage of the effectiveness of factor analysis as a front-end for extracting speaker-specific features (i.e., i-vectors), we develop a probabilistic approach to speaker clustering by applying a Bayesian Gaussian Mixture Model (GMM) to principal component analysis (PCA)-processed i-vectors. We then utilize information at different temporal resolutions to arrive at an iterative optimization scheme that, in alternating between clustering and re-segmentation steps, demonstrates the ability to improve both speaker cluster assignments and segmentation boundaries in an unsupervised manner. Our proposed methods attain results that are comparable to those of a state-of-the-art benchmark set on the multi-speaker CallHome telephone corpus. We further compare our system with a Bayesian nonparametric approach to diarization and attempt to reconcile their differences in both methodology and performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
说话人特征化的无监督方法:一种集成迭代方法
在说话人分割中,标准方法通常在初始分割上对说话人进行聚类,然后在重新分割步骤中对分割边界进行细化,以获得最终的说话人分割假设。在本文中,我们将改进的聚类方法与现有的再分割算法相结合,并以迭代的方式共同优化说话人聚类分配和分割边界。对于聚类,我们扩展了之前的研究,使用因子分析对说话人建模。为了继续利用因子分析作为提取说话人特定特征(即i向量)的前端的有效性,我们通过将贝叶斯高斯混合模型(GMM)应用于主成分分析(PCA)处理的i向量,开发了一种概率方法来聚类说话人。然后,我们利用不同时间分辨率的信息来得出一个迭代优化方案,该方案在聚类和重新分割步骤之间交替进行,证明了以无监督的方式改善说话人聚类分配和分割边界的能力。我们提出的方法获得的结果与在多扬声器CallHome电话语料库上设置的最先进的基准相当。我们进一步将我们的系统与贝叶斯非参数化方法进行比较,并试图调和它们在方法和性能方面的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Audio Speech and Language Processing
IEEE Transactions on Audio Speech and Language Processing 工程技术-工程:电子与电气
自引率
0.00%
发文量
0
审稿时长
24.0 months
期刊介绍: The IEEE Transactions on Audio, Speech and Language Processing covers the sciences, technologies and applications relating to the analysis, coding, enhancement, recognition and synthesis of audio, music, speech and language. In particular, audio processing also covers auditory modeling, acoustic modeling and source separation. Speech processing also covers speech production and perception, adaptation, lexical modeling and speaker recognition. Language processing also covers spoken language understanding, translation, summarization, mining, general language modeling, as well as spoken dialog systems.
期刊最新文献
A High-Quality Speech and Audio Codec With Less Than 10-ms Delay Efficient Approximation of Head-Related Transfer Functions in Subbands for Accurate Sound Localization. Epoch Extraction Based on Integrated Linear Prediction Residual Using Plosion Index Body Conducted Speech Enhancement by Equalization and Signal Fusion Soundfield Imaging in the Ray Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1