Modeling Spectral Envelopes Using Restricted Boltzmann Machines and Deep Belief Networks for Statistical Parametric Speech Synthesis

Zhenhua Ling, L. Deng, Dong Yu
{"title":"Modeling Spectral Envelopes Using Restricted Boltzmann Machines and Deep Belief Networks for Statistical Parametric Speech Synthesis","authors":"Zhenhua Ling, L. Deng, Dong Yu","doi":"10.1109/TASL.2013.2269291","DOIUrl":null,"url":null,"abstract":"This paper presents a new spectral modeling method for statistical parametric speech synthesis. In the conventional methods, high-level spectral parameters, such as mel-cepstra or line spectral pairs, are adopted as the features for hidden Markov model (HMM)-based parametric speech synthesis. Our proposed method described in this paper improves the conventional method in two ways. First, distributions of low-level, un-transformed spectral envelopes (extracted by the STRAIGHT vocoder) are used as the parameters for synthesis. Second, instead of using single Gaussian distribution, we adopt the graphical models with multiple hidden variables, including restricted Boltzmann machines (RBM) and deep belief networks (DBN), to represent the distribution of the low-level spectral envelopes at each HMM state. At the synthesis time, the spectral envelopes are predicted from the RBM-HMMs or the DBN-HMMs of the input sentence following the maximum output probability parameter generation criterion with the constraints of the dynamic features. A Gaussian approximation is applied to the marginal distribution of the visible stochastic variables in the RBM or DBN at each HMM state in order to achieve a closed-form solution to the parameter generation problem. Our experimental results show that both RBM-HMM and DBN-HMM are able to generate spectral envelope parameter sequences better than the conventional Gaussian-HMM with superior generalization capabilities and that DBN-HMM and RBM-HMM perform similarly due possibly to the use of Gaussian approximation. As a result, our proposed method can significantly alleviate the over-smoothing effect and improve the naturalness of the conventional HMM-based speech synthesis system using mel-cepstra.","PeriodicalId":55014,"journal":{"name":"IEEE Transactions on Audio Speech and Language Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TASL.2013.2269291","citationCount":"160","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Audio Speech and Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASL.2013.2269291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 160

Abstract

This paper presents a new spectral modeling method for statistical parametric speech synthesis. In the conventional methods, high-level spectral parameters, such as mel-cepstra or line spectral pairs, are adopted as the features for hidden Markov model (HMM)-based parametric speech synthesis. Our proposed method described in this paper improves the conventional method in two ways. First, distributions of low-level, un-transformed spectral envelopes (extracted by the STRAIGHT vocoder) are used as the parameters for synthesis. Second, instead of using single Gaussian distribution, we adopt the graphical models with multiple hidden variables, including restricted Boltzmann machines (RBM) and deep belief networks (DBN), to represent the distribution of the low-level spectral envelopes at each HMM state. At the synthesis time, the spectral envelopes are predicted from the RBM-HMMs or the DBN-HMMs of the input sentence following the maximum output probability parameter generation criterion with the constraints of the dynamic features. A Gaussian approximation is applied to the marginal distribution of the visible stochastic variables in the RBM or DBN at each HMM state in order to achieve a closed-form solution to the parameter generation problem. Our experimental results show that both RBM-HMM and DBN-HMM are able to generate spectral envelope parameter sequences better than the conventional Gaussian-HMM with superior generalization capabilities and that DBN-HMM and RBM-HMM perform similarly due possibly to the use of Gaussian approximation. As a result, our proposed method can significantly alleviate the over-smoothing effect and improve the naturalness of the conventional HMM-based speech synthesis system using mel-cepstra.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于受限玻尔兹曼机和深度信念网络的频谱包络建模用于统计参数语音合成
提出了一种新的用于统计参数语音合成的频谱建模方法。在传统的方法中,基于隐马尔可夫模型(HMM)的参数化语音合成采用高阶谱参数,如梅尔倒谱或线谱对。本文提出的方法在两个方面对传统方法进行了改进。首先,使用低水平、未变换的频谱包络(由STRAIGHT声码器提取)的分布作为合成参数。其次,我们采用包含约束玻尔兹曼机(RBM)和深度信念网络(DBN)等多隐变量的图形模型来代替单一高斯分布来表示各HMM状态下的低能级谱包络分布。在合成时,在动态特征约束下,按照最大输出概率参数生成准则,从输入句子的rbm - hmm或dbn - hmm预测谱包络。在每个HMM状态下,对RBM或DBN中可见随机变量的边际分布应用高斯近似,以实现参数生成问题的封闭解。实验结果表明,RBM-HMM和DBN-HMM都能比传统的高斯- hmm更好地生成频谱包络参数序列,具有更好的泛化能力,DBN-HMM和RBM-HMM的表现相似,可能是由于使用了高斯近似。结果表明,本文提出的方法可以显著缓解传统基于hmm的语音合成系统的过度平滑效应,提高系统的自然度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Audio Speech and Language Processing
IEEE Transactions on Audio Speech and Language Processing 工程技术-工程:电子与电气
自引率
0.00%
发文量
0
审稿时长
24.0 months
期刊介绍: The IEEE Transactions on Audio, Speech and Language Processing covers the sciences, technologies and applications relating to the analysis, coding, enhancement, recognition and synthesis of audio, music, speech and language. In particular, audio processing also covers auditory modeling, acoustic modeling and source separation. Speech processing also covers speech production and perception, adaptation, lexical modeling and speaker recognition. Language processing also covers spoken language understanding, translation, summarization, mining, general language modeling, as well as spoken dialog systems.
期刊最新文献
A High-Quality Speech and Audio Codec With Less Than 10-ms Delay Efficient Approximation of Head-Related Transfer Functions in Subbands for Accurate Sound Localization. Epoch Extraction Based on Integrated Linear Prediction Residual Using Plosion Index Body Conducted Speech Enhancement by Equalization and Signal Fusion Soundfield Imaging in the Ray Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1