Learning Optimal Features for Polyphonic Audio-to-Score Alignment

C. Joder, S. Essid, G. Richard
{"title":"Learning Optimal Features for Polyphonic Audio-to-Score Alignment","authors":"C. Joder, S. Essid, G. Richard","doi":"10.1109/TASL.2013.2266794","DOIUrl":null,"url":null,"abstract":"This paper addresses the design of feature functions for the matching of a musical recording to the symbolic representation of the piece (the score). These feature functions are defined as dissimilarity measures between the audio observations and template vectors corresponding to the score. By expressing the template construction as a linear mapping from the symbolic to the audio representation, one can learn the feature functions by optimizing the linear transformation. In this paper, we explore two different learning strategies. The first one uses a best-fit criterion (minimum divergence), while the second one exploits a discriminative framework based on a Conditional Random Fields model (maximum likelihood criterion). We evaluate the influence of the feature functions in an audio-to-score alignment task, on a large database of popular and classical polyphonic music. The results show that with several types of models, using different temporal constraints, the learned mappings have the potential to outperform the classic heuristic mappings. Several representations of the audio observations, along with several distance functions are compared in this alignment task. Our experiments elect the symmetric Kullback-Leibler divergence. Moreover, both the spectrogram and a CQT-based representation turn out to provide very accurate alignments, detecting more than 97% of the onsets with a precision of 100 ms with our most complex system.","PeriodicalId":55014,"journal":{"name":"IEEE Transactions on Audio Speech and Language Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TASL.2013.2266794","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Audio Speech and Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASL.2013.2266794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

This paper addresses the design of feature functions for the matching of a musical recording to the symbolic representation of the piece (the score). These feature functions are defined as dissimilarity measures between the audio observations and template vectors corresponding to the score. By expressing the template construction as a linear mapping from the symbolic to the audio representation, one can learn the feature functions by optimizing the linear transformation. In this paper, we explore two different learning strategies. The first one uses a best-fit criterion (minimum divergence), while the second one exploits a discriminative framework based on a Conditional Random Fields model (maximum likelihood criterion). We evaluate the influence of the feature functions in an audio-to-score alignment task, on a large database of popular and classical polyphonic music. The results show that with several types of models, using different temporal constraints, the learned mappings have the potential to outperform the classic heuristic mappings. Several representations of the audio observations, along with several distance functions are compared in this alignment task. Our experiments elect the symmetric Kullback-Leibler divergence. Moreover, both the spectrogram and a CQT-based representation turn out to provide very accurate alignments, detecting more than 97% of the onsets with a precision of 100 ms with our most complex system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习复调音频与乐谱对齐的最佳功能
本文讨论了特征函数的设计,用于将音乐录音与作品(乐谱)的符号表示相匹配。这些特征函数被定义为音频观察和对应于分数的模板向量之间的不相似性度量。通过将模板构造表示为从符号到音频表示的线性映射,可以通过优化线性变换来学习特征函数。本文探讨了两种不同的学习策略。第一个使用最佳拟合标准(最小散度),而第二个利用基于条件随机场模型的判别框架(最大似然标准)。我们在一个大型的流行和古典复调音乐数据库中评估了特征函数在音频-乐谱对齐任务中的影响。结果表明,对于几种类型的模型,使用不同的时间约束,学习映射具有优于经典启发式映射的潜力。在这个校准任务中,比较了音频观测的几种表示以及几种距离函数。我们的实验选择对称的Kullback-Leibler散度。此外,光谱图和基于cqt的表示都提供了非常精确的对准,在我们最复杂的系统中,检测超过97%的发作,精度为100毫秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Audio Speech and Language Processing
IEEE Transactions on Audio Speech and Language Processing 工程技术-工程:电子与电气
自引率
0.00%
发文量
0
审稿时长
24.0 months
期刊介绍: The IEEE Transactions on Audio, Speech and Language Processing covers the sciences, technologies and applications relating to the analysis, coding, enhancement, recognition and synthesis of audio, music, speech and language. In particular, audio processing also covers auditory modeling, acoustic modeling and source separation. Speech processing also covers speech production and perception, adaptation, lexical modeling and speaker recognition. Language processing also covers spoken language understanding, translation, summarization, mining, general language modeling, as well as spoken dialog systems.
期刊最新文献
A High-Quality Speech and Audio Codec With Less Than 10-ms Delay Efficient Approximation of Head-Related Transfer Functions in Subbands for Accurate Sound Localization. Epoch Extraction Based on Integrated Linear Prediction Residual Using Plosion Index Body Conducted Speech Enhancement by Equalization and Signal Fusion Soundfield Imaging in the Ray Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1