High-Efficiency Field-Free Spin-Orbit Switching Based on PtW Alloy Layer

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Nanotechnology Pub Date : 2023-09-08 DOI:10.1109/TNANO.2023.3313313
Xiangyu Liu;Xiukai Lan;Zelalem Abebe Bekele;Weihao Li;Shouguo Zhu;Pengwei Dou;Yuanbo Wang;Jingyan Zhang;Shouguo Wang;Kaiyou Wang
{"title":"High-Efficiency Field-Free Spin-Orbit Switching Based on PtW Alloy Layer","authors":"Xiangyu Liu;Xiukai Lan;Zelalem Abebe Bekele;Weihao Li;Shouguo Zhu;Pengwei Dou;Yuanbo Wang;Jingyan Zhang;Shouguo Wang;Kaiyou Wang","doi":"10.1109/TNANO.2023.3313313","DOIUrl":null,"url":null,"abstract":"Current-driven spin-orbit-torque (SOT)-induced device is a promising candidate with nonvolatility, low energy consumption, and ultrafast speed for the next-generation storage and computing technique. However, the requirement of the assistant magnetic field hinders its application. Besides, the switching current density in SOT-induced devices still needs to be further reduced. Here, we prepared devices with stacks of Ta/Pt<sub>100-<italic>x</italic></sub>W<italic><sub>x</sub></italic>/Co/AlO<italic><sub>y</sub></italic>/Pt and systematically investigated changes in the switching efficiency with W content. A high damping-like effective field per unit current density <italic>η</italic><sub>DL</sub> up to 40.57 ± 3.32 (Oe/(10<sup>6</sup> A/cm<sup>2</sup>)) was observed in the device with a Pt<sub>74</sub>W<sub>26</sub> layer, which is one order of magnitude higher than that in the typical spin-orbit devices with pure heavy metal layer reported in the previous articles. In addition, field-free switching is observed in devices with a wide range of W content using the competing spin currents generated from the Pt<sub>100-<italic>x</italic></sub>W<italic><sub>x</sub></italic> layer. Zero-field switching (ZFS) critical current densities of them are less than 1.09 ± 0.05 (10<sup>7</sup> A/cm<sup>2</sup>) with the minimum of 1.58 ± 0.13 (10<sup>6</sup> A/cm<sup>2</sup>), indicating the highly efficient field-free spin-orbit switching in the PtW system. Our findings pave the way to high-energy-efficiency spin-orbit devices.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"22 ","pages":"576-580"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10244052/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Current-driven spin-orbit-torque (SOT)-induced device is a promising candidate with nonvolatility, low energy consumption, and ultrafast speed for the next-generation storage and computing technique. However, the requirement of the assistant magnetic field hinders its application. Besides, the switching current density in SOT-induced devices still needs to be further reduced. Here, we prepared devices with stacks of Ta/Pt100-xWx/Co/AlOy/Pt and systematically investigated changes in the switching efficiency with W content. A high damping-like effective field per unit current density ηDL up to 40.57 ± 3.32 (Oe/(106 A/cm2)) was observed in the device with a Pt74W26 layer, which is one order of magnitude higher than that in the typical spin-orbit devices with pure heavy metal layer reported in the previous articles. In addition, field-free switching is observed in devices with a wide range of W content using the competing spin currents generated from the Pt100-xWx layer. Zero-field switching (ZFS) critical current densities of them are less than 1.09 ± 0.05 (107 A/cm2) with the minimum of 1.58 ± 0.13 (106 A/cm2), indicating the highly efficient field-free spin-orbit switching in the PtW system. Our findings pave the way to high-energy-efficiency spin-orbit devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PtW合金层的高效无场自旋轨道开关
电流驱动的自旋轨道转矩(SOT)诱导器件具有无挥发性、低能耗和超快速度等优点,是下一代存储和计算技术的一个有前途的候选器件。然而,对辅助磁场的要求阻碍了其应用。此外,sot诱导器件的开关电流密度仍需进一步降低。在这里,我们制备了Ta/Pt100-xWx/Co/AlOy/Pt堆叠的器件,并系统地研究了W含量对开关效率的影响。在Pt74W26层的器件中,单位电流密度的有效场ηDL高达40.57±3.32 (Oe/(106 A/cm2)),比以往报道的纯重金属层的典型自旋轨道器件高一个数量级。此外,利用Pt100-xWx层产生的竞争自旋电流,可以在具有广泛W含量的器件中观察到无场开关。它们的零场开关(ZFS)临界电流密度小于1.09±0.05 (107 A/cm2),最小为1.58±0.13 (106 A/cm2),表明在PtW系统中实现了高效的无场自旋轨道开关。我们的发现为高能效自旋轨道装置铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
期刊最新文献
High-Speed and Area-Efficient Serial IMPLY-Based Approximate Subtractor and Comparator for Image Processing and Neural Networks Design of a Graphene Based Terahertz Perfect Metamaterial Absorber With Multiple Sensing Performance Impact of Electron and Hole Trap Profiles in BE-TOX on Retention Characteristics of 3D NAND Flash Memory Full 3-D Monte Carlo Simulation of Coupled Electron-Phonon Transport: Self-Heating in a Nanoscale FinFET Experimental Investigations and Characterization of Surfactant Activated Mixed Metal Oxide (MMO) Nanomaterial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1