{"title":"An Efficient Architecture of Adder Using Fault-Tolerant Majority Gate Based on Atomic Silicon Nanotechnology","authors":"Seyed-Sajad Ahmadpour;Nima Jafari Navimipour;Ali Newaz Bahar;Senay Yalcin","doi":"10.1109/TNANO.2023.3309908","DOIUrl":null,"url":null,"abstract":"It is expected that Complementary Metal Oxide Semiconductor (CMOS) implementation with ever-smaller transistors will soon face significant issues such as device density, power consumption, and performance due to the requirement for challenging fabrication processes. Therefore, a new and promising computation paradigm, nanotechnology, can replace CMOS technology. In addition, a new frontier in computing is opened up by nanotechnology called atomic silicon, which has the same extraordinary behavior as quantum dots. On the other hand, atomic silicon circuits are highly prone to defects, so suggested fault-tolerant structures in this technology play important roles. The full adders have gained popularity and find widespread use in efficiently solving mathematical problems. In the following article, we will explore the development of an efficient fault-tolerant 3-input majority gate (FT-MV3) using DBs, further enhancing the capabilities of digital circuits. A rule-based approach to the redundant DB achieves a less complex and more robust atomic silicon layout for the MV3. We use the SiQAD tool to simulate proposed circuits. In addition, to confirm the efficiency of the proposed gate, all common defects, such as single and double dangling bond omission defects and DB dislocation defects, are examined. The suggested gate is 100% and 66.66% tolerant against single and double DB omission defects, respectively. Furthermore, a new adder design is introduced using the suggested FT-MV3 gate. The results show that the suggested adder is 44.44% and 35.35% tolerant against single and double DB omission defects. Finally, a fault-tolerant four-bit adder is designed based on the proposed adder.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"22 ","pages":"531-536"},"PeriodicalIF":2.1000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10234018/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
It is expected that Complementary Metal Oxide Semiconductor (CMOS) implementation with ever-smaller transistors will soon face significant issues such as device density, power consumption, and performance due to the requirement for challenging fabrication processes. Therefore, a new and promising computation paradigm, nanotechnology, can replace CMOS technology. In addition, a new frontier in computing is opened up by nanotechnology called atomic silicon, which has the same extraordinary behavior as quantum dots. On the other hand, atomic silicon circuits are highly prone to defects, so suggested fault-tolerant structures in this technology play important roles. The full adders have gained popularity and find widespread use in efficiently solving mathematical problems. In the following article, we will explore the development of an efficient fault-tolerant 3-input majority gate (FT-MV3) using DBs, further enhancing the capabilities of digital circuits. A rule-based approach to the redundant DB achieves a less complex and more robust atomic silicon layout for the MV3. We use the SiQAD tool to simulate proposed circuits. In addition, to confirm the efficiency of the proposed gate, all common defects, such as single and double dangling bond omission defects and DB dislocation defects, are examined. The suggested gate is 100% and 66.66% tolerant against single and double DB omission defects, respectively. Furthermore, a new adder design is introduced using the suggested FT-MV3 gate. The results show that the suggested adder is 44.44% and 35.35% tolerant against single and double DB omission defects. Finally, a fault-tolerant four-bit adder is designed based on the proposed adder.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.