{"title":"Improving Reliability of Copper Dual-Damascene Interconnects by Impurity Doping and Interface Strengthening","authors":"Munehiro Tada;Mari Abe;Naoya Furutake;Fuminori Ito;Takashi Tonegawa;Makoto Sekine;Yoshihiro Hayashi","doi":"10.1109/TED.2007.901265","DOIUrl":null,"url":null,"abstract":"Electromigration (EM)-derived void nucleation and growth in 65-nm-node dual-damascene interconnects were investigated, and the effects of impurity doping as well as copper adhesion strength to a capping-dielectric layer (CAP) are clarified. It is found that surface-reductive treatment of the copper line improves its adhesion to the SiCN-CAP, elongating the incubation time of voiding at the via bottom. An aluminum doping is effective in suppressing both the void nucleation and growth. Consequently, an aluminum-doped copper alloy with the strong copper/CAP interface improves the EM lifetime by 50 times compared to that of a conventional pure copper. These results clearly indicate that blocking migration paths of vacancies through both grain boundaries and the copper/CAP interface is essential in improving the EM reliability.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"54 8","pages":"1867-1877"},"PeriodicalIF":2.9000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TED.2007.901265","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/4277983/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 26
Abstract
Electromigration (EM)-derived void nucleation and growth in 65-nm-node dual-damascene interconnects were investigated, and the effects of impurity doping as well as copper adhesion strength to a capping-dielectric layer (CAP) are clarified. It is found that surface-reductive treatment of the copper line improves its adhesion to the SiCN-CAP, elongating the incubation time of voiding at the via bottom. An aluminum doping is effective in suppressing both the void nucleation and growth. Consequently, an aluminum-doped copper alloy with the strong copper/CAP interface improves the EM lifetime by 50 times compared to that of a conventional pure copper. These results clearly indicate that blocking migration paths of vacancies through both grain boundaries and the copper/CAP interface is essential in improving the EM reliability.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.